Authors

Abstract

Bentonite has widely been employed in many industrial applications due to their physicochemical properties and availability at low cost. The aim of this work was conducted to submit the Iraqi natural bentonite clay to beneficiation pretreatment and chemical acidification using 60% sulfuric acid under mechanical agitation for 2 hours at atmospheric temperature and pressure condition. The resulting bentonite was washed several times with distilled water and modified with ethanol under ultrasonic mixing. An experimental study was conducted to study the chemical composition, grain size, structural characterization and morphology of nano particle bentonite obtained using techniques of AFM microscopy, X-ray fluorescence XRF, X-ray diffraction XRD, scanning electron microscopy SEM, surface area by BET method, and FT-IR spectra.
The calculated surface area of nanobentonite was 161.842 m2/gm, and total pore volume of 0.2196 cm3/gm. The nanoscalebentonite particles diameter in the range of 52 nm at maximum intensity of AFM. The FITR spectra assigned peaks; at 3392.22 and 1635.69 cm-1 is attributed to OH stretching (Al-OH and Si-OH) for bentonite, at 1159, 798.20 and 677.46cm-1 are assigned to characteristic bands of silicates; and peak at 500.08 cm-1 is responsible for Al-O-Si group deformation. SEM analysis show that nanobentonite structure due to beneficiation and activation conditions. The results of X-ray diffraction after activation observed that the intensity of the reflections of the characteristic peak of the gypsum and calcite belonging to the other minerals change due to destruction of the structure in the bentonite phases.

Keywords