
Eng. &Tech.Journal, Vol.34,Part (B), No.6,2016

219

Proposal New Cache Coherence Protocol to Optimize CPU Time

through Simulation Caches

Dr. Luma Fayeq Jalil

Department of Computer Sciences, University of Technology /Baghdad

Dr. Maha Abdulkareem .H. Al-Rawi

Department of Computer Sciences, University of Technology /Baghdad

Abeer Diaa Al-Nakshabandi

Distribution office At Ministry of Electricity/Baghdad

Email:abeerdiaaphd@gmail.com

Received on:11/5/2016 & Accepted on:20/10/2016

ABSTRACT
The cache coherence is the most important issue that rapidly affected the performance

of a multicore processor as a result of increasing the number of cores on chip multiprocessors

and the shared memory program that will be run on these processors. "Snoopy protocols" and

"directory based protocols" are two types of protocols that are used to achieve coherence

between caches. The main objective of these Protocols is to achieve consistency and validation

of the data value in the caches of a multi core processor so that any reading of a memory

address via any caches will returns the latest data written to that address.

In this paper, a new protocol has been designed to solve a problem of a cache coherence

that combines the two schemes of coherency: snooping and directory depending on the states of

MESI protocol. The MESI protocol is a version of the snooping cache protocol which based on

four (Modified, Exclusive, Shared, Invalid) states that a block in the cache memory can have.

The proposed protocol has the same states of MESI protocol but the difference is in laying the

directory inside a shared cache instead of main memory to make the processor more efficient by

reducing the gap between fast CPU and slow main memory.

Keywords: Cache coherence problem, snooping protocol, Directory-Based cache Protocols,

MESI, Cache Simulator, Dev. C++, Multiprocessor, shared memory.

INTRODUCTION

hared memory is the hardware part that supported by many modern computer systems and

multicore chips. Each of the processor cores in a shared memory system may read and

write a single address space [1]. But in designing shared system, one of the most

important problems appears which is called coherence problem. The coherence problem results

when the caches are laid in recent computers between processor and main memory to solve the

contention problem as trying to access a shared memory at the same time which then causes

performance degradation [2].

Two hardware-based protocols are used to solve coherence problem that appeared in a

shared memory system of a multicore processor with caches that can store multiple copies of

memory blocks simultaneously which are "Snooping protocols" and "Directory-based

protocols" [3,4,5].

Memory Hierarchy

The basic idea to overcome the problem of increasing the gap between a fast CPU and a

slow RAM is in using a hierarchy of memories as in figure (1). Each level speedier, more

expensive and smaller, the closer it is to CPU, to feed the CPU with the required data [6].

S

https://doi.org/10.30684/etj.34.6B.20
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

Eng. &Tech.Journal, Vol.34,Part (B), No.6,2016 Proposal New Cache Coherence Protocol

 To Optimize CPU Time through Simulation Caches

219

Figure 1: The Memory Hierarchy [7, 8 , 9]

Protocols for Cache Coherence

Two hardware-based protocols to coherence the caches in multiprocessor systems are

used which include:-

Snooping Protocol

 To solve the problem of cache coherence by snoopy protocol, the central bus is used as a

"broadcast medium" which make the transactions on bus visible to all` caches [11,12]. As a

result the cache controllers of all processors can observe all memory accesses (figure 2) [5,7]:

 Figure 2: Snoopy Protocol [13]

These protocols are called "update-based protocols" when updated is performed directly by the

cache controllers. Also "invalidation-based protocols" occur when the cache block that match

memory block is invalidated and as a result main memory must update next read [3].

1

2

Eng. &Tech.Journal, Vol.34,Part (B), No.6,2016 Proposal New Cache Coherence Protocol

 To Optimize CPU Time through Simulation Caches

219

Directory Based Protocol

The ability of scaling in directory based schemes is better than snooping because it does

not depend upon a shared bus for communication. The directory which can be central or

distributed keeps state of all memory block shared between processors and then the cache

controller uses point-to-point messages looking up directory instead of observing shared

broadcast to get memory block state [3, 10]. (Figure 3). Although the directory-based protocols

will likely have to be employed for multi core architectures of the future, there exist a

drawbacks that appears in a directory which are: storage overhead, frequent indirections, and are

more prone to design bugs [14,15,16].

Interconnection Network

Cache n

Pn

Dir Entry

P1

Cache block

S

0 1 2 3 4 5 6

Cache 1

Presence bits vector
State

Directory Entry Format

Symbol S means Memory line is shared

Shared processor are 1, 2, 4 and 6

Figure 3: Directory Based Protocols [6]

Preprocessing steps to proposal protocol

 A Preprocessing steps before beginning proposal protocol are illustrated as in

Figure 4, Figure 5, Figure6 respectively:

Eng. &Tech.Journal, Vol.34,Part (B), No.6,2016 Proposal New Cache Coherence Protocol

 To Optimize CPU Time through Simulation Caches

219

Start

1
Determine the size of a main memory, for example, from 0 up to 255,

which will consider the addresses of that memory

2Use function for convert decimal addresses to binary address

3Use function to calculate tag & index& offset From binary number

4

 Simulate caches as a subset of a main memory to a three level depending on

index and tag and offset of all addresses probability using a direct mapped method

 All levels of caches lie in a temporary position before beginning execution

 of a sample program

5
Simulate 4 caches in level1 that contain 8 tag (3-bit), 4 index (2-bit), 8 offset (3-bit)

From 8-bit of main memory address (256 byte)

6

Simulate 4 caches in level2 that contain 4 tag (2-bit), 8 index (3-bit), 8 offset (3-bit)

That service as a victim cache, that is only contains data evicted from Level1 cache

If there is no available space in L1 cache

7

Construct a directory at Level3 cache without tag

that contain all memory addresses within

32 index (5-bit), 8 offset(3-bit) which will be shared

among all caches at both level1 and level2.

This directory used as a tracker of shared caches

and contain last updated of data and states

Within name of sharer cores

1

Figure 4: preprocessing steps of a proposed protocol

Eng. &Tech.Journal, Vol.34,Part (B), No.6,2016 Proposal New Cache Coherence Protocol

 To Optimize CPU Time through Simulation Caches

219

Figure 4: cont.

Direct Mapped Method

 It is the simplest technique which maps each block of main memory into only one

possible cache line [16]. The mapping is expressed using equation 1

 ---------------- (1)

Cache block = address modulo number of words in cache line ---------------- (2)

Total number of memory blocks = number of main memory addresses / number of words in

cache line ---------------- (3)

Eng. &Tech.Journal, Vol.34,Part (B), No.6,2016 Proposal New Cache Coherence Protocol

 To Optimize CPU Time through Simulation Caches

219

Figure 5: Simulation process using Direct Mapped Method

In the case of not existence the address

Eng. &Tech.Journal, Vol.34,Part (B), No.6,2016 Proposal New Cache Coherence Protocol

 To Optimize CPU Time through Simulation Caches

219

Figure 6: Simulation process using Direct Mapped Method

In the case of existence the address

Transition State Diagram of proposal protocol

 A cache line in each cache of proposal protocol can be in one of the following states as

in Figure 7:-

Modified: the data owned by one processor, but it is dirty; must respond to any read/write

request

Exclusive: the data owned by one processor and it is clean; no need to inform others about

further changes

Shared: cached in more than one processors and memory is up-to-date

Invalid: The block has been invalidated (possibly on the request of someone else)

Eng. &Tech.Journal, Vol.34,Part (B), No.6,2016 Proposal New Cache Coherence Protocol

 To Optimize CPU Time through Simulation Caches

212

Figure 7: The state diagram of proposal protocol within shared directory at L3

The abbreviate symbols of these buses are as follow:

Bus transaction:

Invalidate = Broadcast Invalidate

Events:

RH = Read Hit

RMS = Read Miss, Shared

RME = Read Miss, Exclusive

WH = Write Hit

WM = Write Miss

WME = Write Miss, Exclusive

SHR = Snoop Hit on Read

SHI = Snoop Hit on Invalidate

Eng. &Tech.Journal, Vol.34,Part (B), No.6,2016 Proposal New Cache Coherence Protocol

 To Optimize CPU Time through Simulation Caches

299

Measuring Cache Performance

Time CPU lapses in the implementation of the program as well as in waiting inside the memory,

so CPU time is calculated as in the following equations [6, 7]:

 ()
 ()

 (

)

 ()

 (

) ()

 ()

 ()

 ()

 ()

 ((
))
 ()

Where

 IC = Instruction Counter

 CPI = Clock cycle Per Instruction

 AMAT = Average Memory Access Time

 Hit -- the referenced information is in the cache.

 Miss -- the referenced information is not in cache, and must be read from MM

 Hit time – is how long it takes data to be sent from the cache to the processor. This is

usually fast, on the order of 1-5 clock cycles at Level1, of 10-20 clock cycles at Level2,

of 30-40 clock cycles at Level3, of 50-100 clock cycles at main memory.

 Miss penalty – is the time to copy data from main memory to the cache. This often

requires dozens of clock cycles (at least).

 Hit ratio -- percentage of time the data is found in the higher cache.

 Miss ratio – is the percentage of misses and equal (100 - hit ratio).

The Experiment Result Using DEV C++ Language

Binary Representation

 Binary representation is one of a necessary preprocessing steps used to convert decimal

addresses to binary address in order to obtain tag and index and offset of each binary address so

as to facilitate the work of a mapping algorithm. In a proposed protocol, Main Memory has 8-

bit to represent the address. So, the addresses of memory have 256 addresses as in table 1.

Eng. &Tech.Journal, Vol.34,Part (B), No.6,2016 Proposal New Cache Coherence Protocol

 To Optimize CPU Time through Simulation Caches

291

Table 1: Binary Representation of a Memory Addresses as Tag and Index and Offset

Memory

address

 Binary representation Decimal number

 tag index offset tag index offset

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 1

2 0 0 0 0 0 0 1 0 0 0 2

3 0 0 0 0 0 0 1 1 0 0 3

. .

.

.

.

.

. . . .

 255 1 1 1 1 1 1 1 1 7 3 7

Cache Simulation using Direct Mapped Function

 The mapping of a memory addresses into L1 caches using direct mapped function are as

follow:-

a- Number of cache block at level1 obtains from equation 3

 Total number of memory blocks = 256 / 8 = 32 block

b- initially cache block are determines from equation 2 as follows

 i.e. the cache block 20 contain the cache line from address 160 to address 167 and

 obtained by dividing these address to 8

 i.e. the cache block 1 contain the cache line from address 8 to address 15 and

 obtained by dividing these address to 8

 i.e. the cache block 18 contain the cache line from address 144 to address 151 and

 obtained by dividing these address to 8

 i.e. the cache block 27 contain the cache line from address 216 to address 223 and

 obtained by dividing these address to 8

c- Then the direct mapped function as in equation 1 is applied to these blocks to obtain

index that will be used in simulation of caches at level 1as follow:

 Cache block 0, 4, 8, 12, 16, 20, 24, 28 are mapped to index 0

 Cache block 1, 5, 9, 13, 17, 21, 25, 29 are mapped to index 1

 Cache block 2, 6, 10, 14, 18, 22, 26, 30 are mapped to index 2

 Cache block 3, 7, 11, 15, 19, 23, 27, 31 are mapped to index 3

 These steps are repeated to simulate caches at level2 and level3 but different is in

number of cache line and tag that they are specified initially

Proposal protocol Results

 Before applying the proposal protocol, a binary function is used to convert addresses of

input sample program to binary address and then other functions are used to obtain tag, index

and offset from a binary address. Table2 list binary addresses that are used in a sample program

exist in table3.

Table 2: Binary Representation of Input Addresses Using Proposal Protocol

address representation cache level1 cache level2 cache level3

Seq binary no address tag index offset Tag index offset tag index offset

1 01000000 64 2 0 0 1 0 0 0 8 0

2 01000100 68 2 0 4 1 0 4 0 8 4

3 01000110 70 2 0 6 1 0 6 0 8 6

Eng. &Tech.Journal, Vol.34,Part (B), No.6,2016 Proposal New Cache Coherence Protocol

 To Optimize CPU Time through Simulation Caches

299

 The results of applying a proposed protocol on a sample program are listed in table7.

Initially all states of input sample program are invalid and also all the values equal to zero.

Table 3: The Results of a Proposed Protocol on a Sample Program

Seq

core

name

core

request

data

cache line

Event

Bus

operation

Sharer

Cores

Description

address state value

1 P1 writes 20 64 M 20 WME invalidate I M

2 P3 writes 7 68 M 7 WME invalidate I M

3 P2 reads 64 S 20 RMS update

directory

P1&P2 at L1 I S

4 P2 writes 77 70 M 77 WME invalidate I M

5 P4 reads 68 S 7 RMS Update

directory

P3&p4 at L1 I S

6 P1 reads 70 S 77 RMS Update

directory

P1&P2at L1 I S

7 P2 writes 45 68 S 45 WME invalidate I M

8 P2 reads 70 S 77 RH P1&P2at L1 S S

9 P4 writes 99 64 M 99 WME Invalidate I M

10 P1 writes 35 64 M 35 WME Invalidate

& Update

directory

 I M

11 P3 reads 64 S 35 RMS Update

directory

P1&P3at L1 I S

12 P1 writes 80 70 M 80 WH invalidate S M

13 P3 reads 68 S 45 RMS Update

directory

P2&P3at L1 I S

14 P2 reads 70 S 80 RMS Update

directory

P1&P2 at L1 I S

15 P1 writes 54 70 M 54 WH invalidate S M

16 P2 reads 68 S 45 RH P2&P3 at L1 S S

17 P4 reads 70 S 54 RMS Update

directory

P1&P4 at L1 I S

18 P1 writes 33 70 M 33 WME invalidate I M

19 P3 reads 70 S 33 RMS Update

directory

P1&P3 at L1 I S

20 P3 reads 64 S 35 RH P1&P3 at L1 S S

Cache Performance Result

 Cache performance can be measured by counting a program execution cycles that include

cache Hit time and a memory stall cycles which result from cache misses. Suppose that after

depending on the clock speed of the central processor, it takes: 7 ns to access data in L1 cache,

17 ns to access data in L2 cache, 30 ns to access data in L3 cache, 80 ns to access data in Main

Memory.

Calculate hit and miss ratio according to both addresses and also to proposed protocol:

- In using proposed protocol1

 The proposed protocol in figure 7 are applied on a sample program, then hit and miss ratio

results are appears at level1 caches only because the input addresses use only 3 address and all

these addresses appear at the same cache line. Hit and miss ratio calculate from table 3 as

follow:

Hit ratio at L1 = (no. of hit in level1/ total no. of address)*100 = (5/20)*100= 25%

Miss ratio in L1 =100-Hit ratio =100-25= 75%

Hit and Miss ratio in level2 and Level3 are not exist

Eng. &Tech.Journal, Vol.34,Part (B), No.6,2016 Proposal New Cache Coherence Protocol

 To Optimize CPU Time through Simulation Caches

299

2- in using addresses

 First address equal to miss and all other addresses are equal to hit because the same line

contains all addresses and when this line is fetch then the first address take from main memory

and the rest addresses appears. So, Hit and miss ratio is calculated as follow:

Hit ratio at L1 = (19/20) * 100 = 95 %

Miss ratio at L1 = 100 – 95 = 5 %

Hit ratio = (hit ratio in protocol + hit ratio in address) / 2 = (25 + 95) / 2 = 60 %

Miss ratio = (miss ratio in protocol + miss ratio in address) / 2 = (75 + 5) / 2 = 40 %

Finally Average Memory Access Time (AMAT) is applied as in equation11

The Comparison between MESI and proposed Protocol

 - In MESI cache coherence Protocols the directory that keep track of shared data is located in

main memory but in a proposed protocol the directory is located in a shared cache level3. As a

result the efficiency is increased by reducing a gap between a fast CPU and a slow main

memory.

- The write through and write back has been translated from main memory into level3 shared

cache, so the disadvantages of write through in uses more memory bandwidth is reduced, and

the disadvantages of write back of making the main memory inconsistent with cache also

reduced. The different between MESI and proposed protocol in using sample program that are

shown in table 3 are as follow:

Steps 3, 5, 6, 11, 13, 14, 17, 19 are write back addresses of a previous modified state to main

memory as a result of a remote read. And step 10 is write back modified address line to main

memory as a result of remote write. But in using proposed protocol these steps return to update

the directory at level3 instead of access to main memory.

Conclusion and Future Works

 A new idea is proposed in this research to achieve cache coherency. The reason behind

the development of coherency protocol is that this protocol effectively affects the efficiency of

the processor in multi-core computer systems.

 In future work the number of caches at level1 and level2 are tried to be increased and

also modifying in one of the states and also increase associativity in using mapping algorithm.

All these idea are proposed in order to reduce access to main memory.

REFERENCES

[1] J. Sorin Daniel & D. Hill Mark & A. Wood David, "A Primer on Memory Consistency and

Cache Coherence ", A Publication in the Morgan & Claypool Publishers series, 2011.

[2] El-Rewini Hesham & Abd-El-Barr Mostafa, "ADVANCED COMPUTER

ARCHITECTURE AND PARALLEL PROCESSING ", Published by John Wiley & Sons, Inc.,

Hoboken, New Jersey. Published simultaneously in Canada, 2005.

[3] Rauber Thomas & R¨unger Gudula, "Parallel Programming For Multicore and Cluster

Systems ", Published by Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin

,2013.

[4] Saparon Azilah, and Bt Razlan Fatin Najihah, " Cache Coherence Protocols in Multi-

Processor", International conference on Computer Science and Information Systems

(ICSIS’2014) Oct 17-18, 2014 Dubai (UAE) .

[5] Zaghloul Soha S., et.al., " Index-Based Cache Coherence Protocol ", Journal of

communication and Compter vol. 11pp. 479-483 2014.

[6] A. Patterson David & L. Hennessy John, "Computer Organization and Design the Hardware

/ software interface ", Elsevier Inc., 2005.

[7] A. Patterson David & L. Hennessy John, "Computer Architecture A quantitative approach ",

Morgan Kaufmann is an imprint of Elsevier, 2012.

Eng. &Tech.Journal, Vol.34,Part (B), No.6,2016 Proposal New Cache Coherence Protocol

 To Optimize CPU Time through Simulation Caches

299

[8] Stalling William, "Computer organization and architecture designing for performance ",

Printed in the United States of America by Pearson Education, Inc., Upper Saddle River, New

Jersey, 07458, 2010.

[9] Hwang Kai & A. Briggs Faye, "Computer architecture and parallel processing", copyright

by McGraw-Hill, Inc. in New York St. Louis San Francisco, London, Paris, 1985.

[10] Moyer Bryon, "Real World Multicore Embedded Systems", Elsevier Inc., United States of

America, 2013.

[11] Tiwari Anoop, " Performance Comparison of Cache Coherence Protocol on Multi-Core

Architecture", Department of Computer Science and Engineering National Institute of

Technology Rourkela Rourkela, Odisha, 769008, India, 2014.

[12] Al-Hothali Samaher, Soomro Safeeullah , et.al.," Snoopy and Directory Based Cache

Coherence Protocols: A Critical Analysis", Journal of Information & Communication

Technology Vol. 4, No. 1, (Spring 2010) 01-10.

[13] Culler David & Singh Jaswinder Pal & Gupta Anoop, "Parallel Computer Architecture A

Hardware/Software Approach, scalability, programmability", Morgan Kaufmann Publishers.,

1997.

[14] Pugsley Seth H., et.al., "SWEL: Hardware Cache Coherence Protocols to Map Shared Data

onto Shared Caches",19
th
 International Conference on Parallel Architectures and Compilation

Techniques (PACT-19), Vienna, September 2010.

[15] Martin Milo M. K., "Formal Verification and its Impact on the Snooping versus Directory

Protocol Debate", International Conference on Computer Design (ICCD 05) IEEE Computer

Society Publishing Services, 2005.

[16] Ros Alberto and Jimborean Alexandra, "A Dual-Consistency Cache Coherence Protocol",

IEEE 29th International Parallel and Distributed Processing Symposium IPDPS, pp. 1119-1128,

USA, 2015.

