Authors

1 Materials Engineering Department, University of Technology, Baghdad -Iraq mae.19.43@grad.uotechnology.edu.iq

2 Materials Engineering Department, University of Technology, Baghdad -Iraq 130012@uotechnology.edu.iq

3 Materials Engineering Department, University of Technology, Baghdad –Iraq 130028@uotechnology.edu.iq

Abstract

In this work, nanosized Boron nitride and silicon carbide reinforced ZA - 12 matrix hybrid composites were produced using stir casting technique with using of aluminum scrap (AA 2024), pure Al (electrical wires) and zinc scraps. Microstructure Observation was revealed by using scanning electron microscopy, and the analysis showed a uniform distribution of (SiC and BN) hybrid nanoparticles for the Zn-Al matrix. Also, an optical microscope was used to display the dendritic structure and reinforcement particles that dispersed uniformly in the matrix. Mechanical tests results confirmed that the hardness and the compression was increased with increasing the hybrid nanoparticle's percentage, whereas the wear rate decreased as the reinforcing materials increased. Since nanoparticles restrict dislocation movement, the mechanical properties are enhanced. The improvement ratio in hardness after addition was 26%., and in wear rate was 24% and for the compression strength the improvement was (19%).

Keywords