Document Type : Research Paper

Author

Atmospheric Sciences Dept ,University of Mustansiriyah, Baghdad - Iraq

Abstract

This study aims to modeling the plasma frequency profile of the F2 region as a function of geographical location and month of the y ear. The most important model and function used are Chapman function and NeQuick 2 model which have been defined both by exponential function. These models need some ionospheric parameters such as the critical frequency of F2 layer (foF2), maximum peak height (hmF2), semi thickness (ymF2), and the M factor (M (3000) F2). The results of these models are compared with the results of the International Reference Ionosphere (IRI) model. For north hemisphere, the results of Chapman function has great fit with the results of IRI2012 model for low and high latitudes. For southern hemisphere the MAPE has greater values at high latitudes and drops to low latitudes. For NeQuick model, MAPE has a periodic behavior with latitudes. The monthly mean of the MAPE of the results obtained by modeling the plasma frequency profile using Chapman function and NeQuick2 model equal 0.466 and 0.259. The analysis of the MAPE for ten months gives a best correlation between the MAPE and foF2.

Keywords

Main Subjects

[1] P. Sibanda and L.A. McKinnell, "The applicability
of existing topside ionospheric models to the South
Africa region", South African Journal of Science, Vol.
105, Research Letter, pp. 387-390, 2009.
[2] R. C. Ljiljana, Z. Bruno and A.B. Peter, "Status of
available N (h) model profiles", ANNALI DI
GEOPHYSICA, XXXIX (4), pp. 729-733, 1993.
[3] Guide to Reference and Standard Ionosphere
Models, "Parameterized Ionospheric Model (PIM)",
ANSI/AIAA, G-034-1998, Published by American
Institute of Aeronautics and Astronautics, USA, P.
10.1999.
[4] G.E. Rodolfo, M.D. Marta and H. Teresita,
"Electron density profile modeling". ANNALI DI
GEOPHYSICA, XXXIX (4), pp. 539-542, 1996.
[5] M. Pietrella et al., "NeQuick2 and IRI2012 models
applied to mid and high latitudes, and the Antarctic
ionosphere", Antarctic Science, pp. 1-12, 2017.
[6] G. Di Giovanni and S.M. Radicella, "An analytical
model of the electron density profile in the ionosphere".
Adv. Space Res. Vol. 10 No. 11, pp. 27–30. 1990.
[7] S.M. Radicella and M.L. Zhang, "The improved
DGR analytical model of electron density height profile
and total electron content in the ionosphere". Annali di
Geofisica XXXVIII (1), pp. 35–41, 1995.
[8] S.M. Radicella and R. Leitinger, "The Evolution of
the DGR Approach to Model Electron Density
Profiles", Adv. Space Res. Vol. 27, No. 1, pp. 35-
40,2001.
[9] L. Reinhart, M. L. Zhang and S. M. Radicella, "An
improved bottomside for the ionospheric electron
density model NeQuick", Annals of Geophysics, vol.
48, No. 3, June 2005.
[10] B. Nava et al., "A near-real-time model-assisted
ionosphere electron density retrieval method", Radio
Sci., vol. 41, RS6S16, 2006.
[11] B. Nava et al." A new version of the NeQuick
ionosphere electron density", Journal of Atmospheric
and Solar terrestrial Physics", Vol. 70, No. 15, 1856-
1862, 2008.
[12] B. Benoit, L. Matthieu and W. Rene," Galileo
Single Frequency ionospheric correction: Performance
in terms of position", GPS solutions, Vol. 17, No. 1,
January 2013.
[13] Y. Xiao et al., "The Performance of ionospheric
Correlation based on NeQuick2 model adaptation to
Global ionospheric Maps", Advances in Space
Research, Vol. 55, Issue 7, pp. 1741-1747, April 2015.
[14] W. Ningbo, "An Examination of the Galileo
NeQuick model: Comparison with GPS and Jason
TEC", GPS solutions, Vol. 21, Issue 2, pp. 605-615,
April 2017.
[15] J. V. Wright, "A model of the F region above
hmF2", J. Geophysics. Res., vol. 65, pp. 185–191, 1960.
[16] M. W. Fox, "A simple, convenient formalism for
electron density profiles", Radio Sci., vol. 29, pp. 1473-
1491, 1994.
[17] B. W. Reinisch, "Tenth International Digisonde
Training Seminar at UMass Lowell Reviews State of
Real Time Mapping of the Ionosphere", IEEE Antennas
Propagation Magazine, 45, pp. 110-117, 2004.
[18] B. W. Reinisch et al. "Using scale heights derived
from bottomside ionograms for modeling the IRI
topside profile", Adv. Radio Sci., 2, pp. 293-297, 2004.
[19] M. L. Zhang et al. "Results of the modeling of the
topside electron density profile using the Chapman and
Epstein function", Adv. Space Res., vol. 29, pp. 871–
876, 2002.
[20] J.L. Lei et al. "A statistical study of ionospheric
profile parameters derived from Millstone Hill
incoherent scatter radar measurements", Geophysics
Research Letter, 31, L14804, 2004.
[21] J. L. Lei et al., "Variations of electron density
based on long-term incoherent scatter radar and
Ionosonde measurements over Millstone Hill", Radio
Sci., 40, RS2008, 2005.
[22] R. G. Ezquer et al., "Predicted and measured total
electron content at both peaks of the equatorial
anomaly", Radio Sci., vol. 29, pp. 831–838, 1994.
[23] R. G. Ezquer et al., "Predicted and measured total
electron content over Havana", J. Atmos. Terr. Phys.,
vol. 59, pp. 591–596, 1997.
[24] B. W. Reinisch and X. Huang, "Deducing topside
profiles and total electron content from bottomside
ionograms", Adv. Space Res., 27, pp. 23–30, 2001.
[25] X. Huang and B. W. Reinisch, "Vertical electron
content from ionograms in real time", Radio Sci., vol.
36, pp. 335–342. 2001.
[26] A. Belehaki et al., "Comparison of ionospheric
ionization measurements over Athens using ground
Ionosonde and GPS-derived TEC values, Radio Sci.,
vol. 38, No. (6), 1105, 2003.
[27] B. W. Reinisch et al., "Using scale heights derived
from bottomside ionograms for modeling the IRI
topside profile", Adv. Radio Sci., vol. 2, pp. 293-297,
2004.
[28] X. Luan et al., "Climatology of the F-layer
equivalent winds derived from Ionosonde measurements
over two decades along the 120o
-150o E-sector", Ann.
Geophysics, vol.22, pp. 2785–2796, 2004.
[29] L. Liu et al., "Solar activity variations of equivalent
winds derived from global Ionosonde data", J.
Geophysics. Res., vol. 109, A12305, 2004.
[30] S. M. Stankov, "A new method for reconstruction
of the vertical electron density distribution in the upper
ionosphere and plasmasphere", J. Geophysics. Res.,
108(A5), 1164, 2003.
[31] D.N. Anderson, J.M. Forbes and M. Codrescu. "A
fully analytical low and middle latitude ionospheric
models". J. Geophysics. Res, a4, pp. 1520-1524, 1989.
[32] Y.T. Chiu, "An improved phenomenological model
of ionospheric density", Journal of atmospheric and
terrestrial physics, Vol. 37: pp. 1563-1570, 1975.
[33] M. S. Stanimir, J. Norbert and H. Stefan. " A new
method for reconstruction of the vertical electron
density distribution in the upper ionosphere and
plasmasphere", J. Geophysics. Res., Vol. 108, No. A5,
1164, 2003.
[34] B. Nava, P. Coısson and S.M. Radicella, "A new
version of the NeQuick ionosphere electron density
model". J. Atmos. And Solar Terr. Phys., Vol. 70, pp.
1856–1862, 2008
[35] M. De Gonzales and S.M. Radicella, "On a
characteristic point at the base of F2 layer in the
ionosphere", Adv. Space Res., Vol. 10 No. 11, pp. 17–
25, 1990.
[36] R. W. Schunk and F. N. Andrew. "Ionospheres,
Physics, Plasma Physics, and Chemistry". Cambridge
University Press, 2nd ed., UK, Ch. 2, p. 45, 2009.
[37] Y.Y. Won, C. Wenwn, S.C. Tae and M. John,
"Applied Numerical Methods using Matlab", Wiley
Interscience, USA, Ch.1, p. 33, 2005.