Authors

1 Laser and Optoelectronics Engineering Department, University of Technology-Iraq.

2 University of Technology-Iraq.

Abstract

Polymer-based nanocomposites exhibit various optical virtues such as a high refractive index (RI), the dispersion index (Abbe number (νd)) and visible light transmittance (T %) about 95-99%. Titanium dioxide nanoparticles (TiO2 NPs) is suggested as a good candidate to rise the RI and maintain high transparency when it is integrated with Poly(methyl methacrylate) polymer PMMA because TiO2 NPs have a high RI (2.45 and 2.7 for anatase and rutile phase, respectively). The ocular performance was evaluated by modulation transfer function (MTF) and image simulation. The used criteria show that the best visual performance is obtained when TiO2-PMMA-CL of 0.1 wt/volume of TiO2 NPs is used (P < 0.0001) which reduced the generated spherical and chromatic aberrations inside the eye

Keywords

[1] F. A. Maulvi, A. A. Shaikh, D. H. Lakdawala, A. R. Desai, M. M. Pandya, S. S. Singhania, R. J. Vaidya, K. M. Ranch, B. A. Vyas, D. O. Shah, “Design and optimization of a novel implantation technology in contact lenses for the treatment of dry eye syndrome: In vitro and in vivo evaluation,” ACTA BIOMATER.: Vol. 53, pp. 211–221, 2017.
[2] Q. Zhang, Z. Fang, Y. Cao, Du H., H. Wu, R. Beuerman, M. B. Chan-park, H. Duan, R. Xu, “High refractive index inorganic−organic interpenetrating polymer network (IPN) hydrogel nanocomposite toward artificial cornea implants,” ACS Macro lett., Vol. 1, pp. 876–881, 2012.
[3] J. -G. Liu and M. Ueda, “High refractive index polymers: Fundamental research and practical applications,” J. Mater. Chem., Vol. 19, pp. 8907–8919, 2009.
[4] Y. Chujo and K. Tanaka, “New polymer materials based on element-blocks,” Bull. Chem. Soc. Jpn, Vol. 88, pp. 633–643, 2015.
[5] F. J. HOLLY, “Basic aspects of contact lens biocompatibility,” Colloids Surf ., Vol. 10, pp. 343–350, 1984.
[6] T. Goda and K. Ishihara, “Soft contact lens biomaterials from bioinspired phospholipid polymers,” Expert Rev. Med. Devices, Vol. 3, No. 2, pp. 167–174, 2006.
[7] C. Maldonado-Codina and N. Efron, “Dynamic wettability of pHEMA-based hydrogel contact lenses,” Ophthalmic Physiol. Opt., Vol. 26, pp. 408–418, 2006.
[8] E. Seo, S. Kumar, J. Lee, J. Jang, J. H. Park, M.C. Chang, I. Kwon, J. S. Lee, Y. il Huh, “Modified hydrogels based on poly(2-hydroxyethyl methacrylate) (pHEMA) with higher surface wettability and mechanical properties,” Macromol. Res, Vol. 25, pp. 704–711, 2017.
[9] F. Shokrollahzadeh, H. Hashemi, E. Jafarzadehpurc, A. Mirzajani, M. Khabazkhoobd, A. Yekta, S. Asgari, “Corneal aberration changes after rigid gas permeable contact lens wear in keratokonic patients,” J Curr Ophthalmol., Vol. 20, pp. 1–5, 2016.
[10] M. Kita, Y. Ogura, Y. Honda, S.-H. Hyon, W.-I. Cha, Y. Ikada, “Evaluation of polyvinyl alcohol hydrogel as a soft contact lens material,” Graefe’s Arch. Clin. Exp. Ophthalmol, Vol. 228, pp. 533–537, 1990.
[11] G. K. Tummala, R. Rojas, A. Mihranyan, “Poly(vinyl alcohol) Hydrogels Reinforced with Nanocellulose for Ophthalmic Applications: General Characteristics and Optical Properties.,” J. Phys. Chem. B, Vol. 120, pp. 13094–13101, 2016.
[12] Q. Hao, X. Fu, S. Song, D. Gibson, C. Li, H. Chu, Y. Shi, “Investigation of TiO2 Thin film deposited by microwave plasma assisted sputtering and its application in 3D glasses,” Coatings, 8, , Vol. 8, pp. 1–14, 2018.
[13] S. Sathish, B. C. Shekar, B. T. Bhavyasree, “Optimization of bandpass optical filters based on TiO2 nanolayers,” Optical Engineering. Res., Vol. 54, pp. 015101 –7, 2015.
[14] M. M. Demir, K. Koynov, C. Bubeck, I. Park, I. Lieberwirth, G. Wegner, “Optical properties of composites of PMMA and surface-modified zincite nanoparticles,” Macromolecules, Vol. 40, pp. 1089–1100, 2007.
[15] J. Xu, Y. Zhang, W. Zhu, Y. Cui, “Synthesis of polymeric nanocomposite hydrogels containing the pendant ZnS nanoparticles: approach to higher refractive index optical polymeric nanocomposites,” Macromolecules, Vol. 51, No. 7, pp. 2672–2681, 2018.
[16] Y. Xia, C. Zhang, J. X. Wang, D. Wang, X. F. Zeng, J. F. Chen, “Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film,” Langmuir, Vol. 34, No. 23, pp. 6806–6813, 2018.
[17] B. Cai, T. Kaino, O. Sugihara, “Sulfonyl-containing polymer and its alumina nanocomposite
Abbe number and high refractive index,” Opt. Mater. Express, Vol. 5, No. 5, p. 1210, 2015.
[18] E. Hecht, “Optics,” Pearson education limited, 5th ed., England, p. 579, 2017.
[19] M. Schaub, J. Schwiegerling, E. C. Fest, A. Symmons, R. H. Shepard, “Molded optics: design and manufacture,” Taylor and Francis Group, LLC, 2011.
[20] F. Kamil, K. A. Hubiter, T. K. Abed, and A. A. Al-Amiery, “Synthesis of aluminum and titanium oxides nanoparticles via sol-gel method : optimization for the minimum size,” J. Nanosci. Technol., Vol. 2, No. 1, pp. 37–39, 2016.
[21] M. Stickler, T. Rhein, “Polymethacrylates” in Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed., Elvers, B.; Hawkins, S.; Schultz, G. Eds., VHS: New York, 1992, A21, 473.
[22] D. Mauro, A. Cantarella, M. Nicotra, G. Pellegrino, G. Gulino, A. Brundo, M. Privitera, V. Impellizzeri, “Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic applications,” Scientific Reports., 2017, Vol., 7, 40895, 2018.
[23] N. A. Brennan and H.-L. Liou, “Anatomically accurate, finite model eye for optical modeling,” Opt. Soc. Am., Vol. 14, No. 8, pp. 1684–1695, 1997.
[24] G. Westheimer, “Image quality in the human eye,” Opt. Acta Int. J. Opt., Vol. 17, No. 9, pp. 37–41, 1970.
[25] S. Dua, U. R. Acharya, E. Y. K. Ng, “Computational analysis of the human eye with applications,” World Scientific, 2011.
[26] J. M. Geary, “Glass, and the land scape lens,” 2002.
[27] G. Zoulinakis, J. Taboada, T. Blasco, D. Costa, R. Micó. Accommodation in human eye models: a comparison between the optical designs of Navarro, Arizona and Liou-Brennan. Int J Ophthalmol, Vol. 10, pp. 43-50, 2017
[28] Y. Liu, S. Siddiqui, Y. Ji, J. Ge, “Silicone hydrogel contact lenses,” U.S patent 9625616 B2, April 18, 2017.
[29] S. Kennedy, J. G. Linhardt, A. Diciccio, “Cast moldable, high RI, rigid, gass permeable polymer formulations for an accommodating contact lens,” U.S Patent 0088352 A1, March 29, 2018.
[30] S. Sugumaran and C. S. Bellan, “Transparent nano composite PVA-TiO2 and PMMA-TiO2 thin films: Optical and dielectric properties,” Optik (Stuttg)., Vol. 125, No. 18, pp. 5128–5133, 2014.
[31] S. Maeda, M. Fujita, N. Idota, K. Matsukawa, Y. Sugahara, “Preparation of transparent bulk TiO2/PMMA hybrids with improved refractive indices via an in situ polymerization process using TiO2 nanoparticles bearing PMMA chains grown by surface-initiated atom transfer radical polymerization,” ACS Appl. Mater. Interfaces, Vol. 8, No. 50, pp. 34762–34769, 2016.