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Enhanced Solution of Inverse Kinematics for 
Redundant Robot Manipulator Using PSO 

Abstract- Kinematics of the robot is divided into two parts: the forward 
kinematics, which evaluates the end-effector’s position from joint angles, and the 
inverse kinematics, which demonstrates the joint angles from the end-effector's 
position. The solution of the inverse kinematics problem is too difficult and 
complicated for the redundant robot arm manipulator. A Particle Swarm 
Optimization (PSO) algorithm is an effective method to solve global optimization 
problems. This paper presents the solution of inverse kinematics problem of a 
three-link redundant manipulator robot arm using PSO without using the inverse 
kinematics equations. The circle, square and triangle generated trajectories using 
PSO are enhanced as compared with the trajectories of other works. The 
enhanced PSO algorithm is successfully found the best generating three joint 
angles and the best generating end-effector's position of a three-link robot arm. 
Then according to these joints and positions the circle, square and triangle path 
trajectories, results are smoother than the path trajectories of other work. This 
enhanced solution of inverse kinematics using PSO algorithm is too fast due to 
the short elapsed time in every iteration of trajectory. Besides that, these 
velocities results have been given evaluated and give an indication that the three-
link robot is moving fast during the PSO algorithm. The elapsed time of circle 
trajectory equals to 20.903981 seconds, the elapsed time of square trajectory 
equals to 11.747171 seconds and the elapsed time of triangle trajectory equals to 
15.729663 seconds. MATLAB R2015b program is used in order to simulate all 
results. The main benefit of this work is to solve two problems: 1) inverse 
kinematics is too complex equations of the three-link robot. The solutions of best 
joint angles using PSO are computed within joint limits without using inverse 
kinematics equations. 2) Another problem, this work is enhanced three 
trajectories with respect to the best joint angles and reaches 96% percent as 
compared with another work. The error is too small according to the start and 
goal PSO generated points for each trajectory. 
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1. Introduction
In modern life, robots are able to impact on many 
applications such as industrial manufacturing, 
healthcare transportation, and exploration of 
space and underwater. Robots can assist humans 
in their complex tasks [1,2]. Manipulator pointed 
to the robotic arm. Manipulator redundant robot 
is consisted of links connected by joints like a 
chain. Kinematics problem is represented by the 
manipulator motion without the perception of 
forces and torques [3]. In general, the inverse 
kinematics problem of the robot is to get the 
values of the joint positions given end-effector's 
position and orientation [1]. There are many 
artificial intelligence methods solved an inverse 
kinematics problem of manipulator robot. Some 
of them are: the numerical algorithm which is 
based on the fuzzy logic approach that is used for 
solving the inverse kinematic problem of a 
SCARA robot. This method is usually difficult, 
computationally expensive and always gives an 

approximate solution with large error especially 
in the corners of robot workspace. In general, one 
of the most drawbacks of fuzzy logic is that it 
requires high computation time [4]. The inverse 
kinematics problem is solved using conventional 
Genetic Algorithm GA and the Continuous GA 
(CGA) for robot manipulators. The number of 
generation convergence speed of the CGA and 
the average execution time is better than the 
conventional GA algorithm. The average 
execution times for these GA algorithms are too 
long [5]. Many researches have done using 
Neural Networks. One of the latest was done 
using back-propagation neural network algorithm 
of multi-neural networks and solved I.K. problem 
of the Reis Robot–RV12L robot manipulator. 
However, the design was too complex with eight 
large trained Neural Networks [6]. Genetic 
Algorithm (GA) and Neural Network (NN) 
approach solved the problem of inverse 
kinematics for the three-link redundant robot. The 

http://dx.doi.org/10.30684/etj.37.7A.4
  2412-0758/University of Technology-Iraq, Baghdad, Iraq 

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

 241 

http://dx.doi.org/10.30684/etj.37.7A.4
http://creativecommons.org/licenses/by/4.0
mailto:60175@uotechnology.edu.iq
https://orcid.org/0000-0002-6020-158X


Engineering and Technology Journal                                                           Vol. 37, Part A. No. 7, 2019 
 

sine wave and the circle trajectories are also 
simulated in MATLAB program. The simulation 
of trajectories results has little accuracy and the 
generated circle trajectory is not smooth in all 
areas of trajectory [7]. Particle Swarm 
Optimization (PSO) is derived from the natural-
inspired swarm behavior of some animals such as 
bird flocks and fish schoolings. It has many 
advantages such as simple implementation, the 
global optimal solution is founded with high 
probability and efficiency, fast converges, no 
overlap and mutate, the computational time is 
short. PSO is good for solving difficult problems 
in order to find accurate mathematical models [8]. 
In this paper, the inverse kinematics problem is 
solved and enhanced the trajectories of the three-
link robot manipulator using PSO.   
  
2. Forward Kinematics  and Trajectory 
Equations of Redundant Robot 
Manipulator 

In this section, the forward kinematics and 
trajectory equations are illustrated as in the 
following: 
 
I. Forward Kinematics and Joints Limitations 
The forward kinematics problem of the robot 
manipulator has evaluated the end-effector's 
position and orientation from the given joint 
angles values [4, 5]. In this paper, the three-link 
redundant robot manipulator is used as shown in 
Figure 1. 
Figure 1 shows that the three lengths of robot 
manipulator (a1, a2, a3) with three joint angles 
(TH1, TH2, TH3). Three links are connected with 
three joints. Three-link redundant robot 
manipulator forward kinematics equations can be 
written as in Eqs. (1) and (2) [7,9]. 
 xE = a1 cos(TH1) + a2 cos(TH1 +  TH2)

+ a3 cos(TH1 +  TH2 +  TH3)    
yE = a1 sin(TH1) + a2 sin(TH1 +  TH2) +
a3sin (TH1 +  TH2 +  TH3)                                 
(1) 
Where (xE,  yE) refers to the three-link robot end-
effector's position. While (THE) refers to three-
link robot end-effector's orientation as in Eq. (2): 
 THE = TH1 +  TH2 +  TH3                                
(2) 
The link parameter table of a three-link redundant 
robot manipulator is illustrated in Table 1. 
The four parameters in Table I are called: ai=link 
length, αi=link twist, di=link offset, and θi=joint 
angle. The three joint angles are: θ1∗= TH1, 
θ2∗= TH2 and θ3∗= TH3. The * symbol means that 
the angles are changed values with certain ranges. 

The three joints limitations ranges are (0 < TH1< 
π, - π < TH2< 0, and -π/2 < TH3< π/2).    
 
 

 
Figure 1: Three-link redundant robot manipulator 

[7] 
 

Table 1: Link parameter table of the three-link 
redundant robot manipulator 

Link no. ai (m) αi (deg.) di (m)    θi (deg.) 
1 2 0  0    θ1∗  
2 2 0  0  θ2∗  
3 2 0  0  θ3∗  

 
II. Trajectory Equations 
Three-link robot redundant performs three 
trajectories. These trajectories Eq. (3-6) are 
illustrated as below: 
The first circle trajectory equation is expressed as 
in Eq. (3) [7, 9]: 
 yp = yc + r sinφ                                                
(3)                                                                            
Where (xp,  yp) is the desired circle end-effector's 
position of the robot arm, (xc,  yc) is circle's 
center position, r is the radius of the circle and the 
angle as (φ) is [0:2π]. The desired circle of end-
effector's orientation is presented as in Eq. (4) [7, 
9]: 
THd = tan−1 (yp /xp)                                        
(4) 
Parametric Cartesian space trajectory equations 
are used to express the square and the triangular 
trajectories of the three-link robot as shown in 
Figure 2. 
These parametric Cartesian space trajectory eqs. 
(5) and (6) can be written as [10, 11]: 
X(u) = Xa + u(Xb − Xa)                                     
(5) 
Y(u) = Ya + u(Yb − Ya)                                      
(6) 
Where (Xa, Ya): start point; (Xb, Yb): endpoint 
(goal point), (u= 0:1). (X, Y): coordinates of end-
effector's robot. 
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Figure 2: Trajectory line path [10, 11] 

3. Solving Inverse Kinematics for 
Redundant Robot Manipulator using PSO 
This section describes the introduction of PSO 
and the enhanced solving inverse kinematics for 
redundant robot manipulator using PSO.   
 
I. Introduction of Particle Swarm Optimization 
(PSO) 
Particle Swarm Optimization (PSO) was derived 
from the natural-inspired swarm behavior of 
some animals such as bird flocks and fish 
schoolings. Russell Eberhart and James Kennedy 
have invented the PSO algorithm.  The natural 
behavior of swarms has been used in order to 
solve the optimization problem [9]. The basic 
idea of PSO is initialized by randomly generating 
a swarm of particles. Each particle (i) has position 
namely (𝑥𝑥i), with a certain velocity namely (𝑣𝑣i). 
Swarm of particles is executed a random iterative 
search in the space of possible 𝑛𝑛-dimensional 
solution vectors. This algorithm is related to the 
objective function value 𝑓𝑓 = (𝑥𝑥i), where 𝑓𝑓 is the 
function to be minimized. After iterations, the 
optimal solution is accomplished. At every 
iteration, the positions of particles are updated. 
They depend on two main elements: first is the 
best historical position direction achieved by each 
particle individually denotes the individual 
element (pbest). Second is the position achieved 
by any particle in the swarm, denotes the global 
element (gbest). In each iteration, these two 
elements are updated.  The following two main 
Eqs. (7) and (8) of the PSO algorithm are: 
 
𝑣𝑣𝑖,𝑗𝑘+1 = 𝑣𝑣𝑖,𝑗𝑘 + 𝑐1𝑟1�𝑥𝑥𝑏𝑒𝑠𝑡𝑖,𝑗𝑘+1 − 𝑥𝑥𝑖,𝑗𝑘  � +
𝑐2𝑟2(𝑥𝑥𝑔𝑏𝑒𝑠𝑡𝑗𝑘 − 𝑥𝑥𝑖,𝑗𝑘  )                                          
(7) 
 
𝑥𝑥𝑖,𝑗𝑘+1 = 𝑥𝑥𝑖,𝑗𝑘 + 𝑣𝑣𝑖,𝑗𝑘+1                                             
(8) 
 
Where k: denotes the 𝑘𝑡ℎ generation 
 𝑥𝑥𝑖,𝑗𝑘 : 𝑗𝑡ℎComponent of the 𝑖𝑡ℎparticle’s position 
vector 
𝑥𝑥𝑖,𝑗𝑘+1: 𝑗𝑡ℎComponent of the 𝑖𝑡ℎnew particle’s 
position vector 

𝑣𝑣𝑖,𝑗𝑘 : 𝑗𝑡ℎComponent of the 𝑖𝑡ℎparticle’s velocity 
vector 
𝑣𝑣𝑖,𝑗𝑘+1: 𝑗𝑡ℎComponent of the 𝑖𝑡ℎnew particle’s 
velocity vector 
𝑟1, 𝑟2: Random numbers values between 0 and 1 
𝑐1, 𝑐2: called cognition and social constants 
respectively.  
The constants values range of (0, 2). 
𝑥𝑥𝑏𝑒𝑠𝑡𝑖: Best positions experienced of ith particle  
𝑥𝑥𝑔𝑏𝑒𝑠𝑡𝑗: 𝑗𝑡ℎComponent of whole swarm [12, 13, 
14, 15]. 

 
II. Enhanced Solving Inverse Kinematics for 
Redundant Robot Manipulator using PSO 
This work presents the solutions of inverse 
kinematics without using the inverse kinematics 
equations. The inputs initializations are the 
randomly three joint angles within the three joints 
limitations ranges (section (2.1)) of the three-link 
robot arm. After applying the PSO algorithm 
procedure as mention in the previous section (3.1) 
with the fitness, function eq. (9). The position and 
velocity of particles (θ1, θ2, and θ3) are adapted 
depending to their velocity and positions 
equations (7, 8) within the joint angles limit. The 
outputs are three best joint angles. These three 
best joint angles are interring as inputs to the 
forward kinematics eqs. (1,2) in order to find the 
best end-effector positions and orientation. After 
that, the best end-effector positions and 
orientations are inputs to every three trajectories 
(circle, triangle, square) eqs. (3-6) in order to 
achieve the best three generated end-effector 
positions and joint angles as shown in Figure 3. 
Each joint angle variable of three-link redundant 
robot manipulator arm is expressed as a particle: 
θi = (θ1, θ2, θ3). Each particle has a velocity during 
the particle movement: 𝑣𝑣I = (𝑣𝑣θ1, 𝑣𝑣θ2, 𝑣𝑣θ3). The aim 
of the PSO algorithm is to minimize the objective 
function by adjusting joint angles or (θi) and get 
the best solution of joint angles. The 
minimization of fitness function is represented as 
in eq. (9) [13]:  
 
 𝑓𝑓(θ) = ||(θT − θ𝑖)||                                          
(9) 
 
Where θT is the target joint angles and θ𝑖 is the 
estimated joint angles for i=1:3. If the min error 
fitness function is equal or less than 0.0001 and 
the iterations times for each trajectory is equal or 
less than the values in the below flowchart, then 
finish the algorithm or if it is larger than 0.0001 
choose another joint angle within joints 
limitations. Ite1, Ite2, and Ite3 are the PSO 
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iteration times for circle, square and triangle 
trajectories individually as shown in Figure 3.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Flowchart of the enhanced work using 

PSO algorithm 
 
4. Simulation Results 
In this work, three trajectories (circle, triangle, 
and square) are simulated of the three-link robot 
manipulator. The circle trajectory is simulated 
according to the eq. (3) as in Figure 4.  
The square and triangle trajectories are also 
simulated due to parametric Cartesian space 
trajectory eqs. (5) and (6) as shown in Figures 5 
and 6. 
 

 
Figure 4: End-effector’s three-link robot of two 

circle trajectories: generated with PSO and desired 

    

 
Figure 5: End-effector’s three-link robot of two 

square trajectories: generated with PSO and desired 

 
Figure 6: End-effector’s three-link robot of two 
triangle trajectories: generated with PSO and 

desired 

The three joint angles of the desired and the 
generated circle trajectories are simulated of the 
three-link robot for three trajectories (circle, 
triangle, and square) and all results of the 
generated three joint angles are close to the 
desired three joint angles as shown in Figures 7-9. 
Where in these Figures the x-axis presents the 
iterations and the y-axis marked as the angles in 
radian. TH1d, TH2d, and TH3d are the first, 
second and third desired joint angles respectively. 
While TH1g, TH2g, and TH3g are the first, 
second and third generated of joint angles. The 

1.5 2 2.5 3 3.5 4 4.5

x(m)

0.5

1

1.5

2

2.5

3

3.5

y(
m

)

Desired trajectory

Generated trajectory

Generated start point

Desired start point

1.5 2 2.5 3 3.5 4 4.5

x(m)

0.5

1

1.5

2

2.5

3

3.5

y(
m

)

Desired trajectory

Generated trajectory

Generated start point

Desired start point

1.5 2 2.5 3 3.5 4 4.5

x(m)

0.5

1

1.5

2

2.5

3

3.5

y(
m

)

Desired trajectory

Generated trajectory

Generated start point

Desired start point

) 3θ 2,θ 1,θStart Initialization of joint angles (
within ranges, initial and desired positions of 

effector-trajectory end 

the best Forward kinematics to find 
effector-position and orientation of end 

PSO algorithm to find best joint 
angles with min. fitness function error 

equations  iesChoose one of trajector
(circle, triangle, square) 

 

 ≤Is the min. error 
0.0001 

1 ≤ 212Ite 
2≤ 100Ite 
3≤ 209Ite 
 

Finish  

Yes  

No  

244 
 



Engineering and Technology Journal                                                           Vol. 37, Part A. No. 7, 2019 
 

three trajectories (circle, triangle, and square) 
numbers of iterations are: (32, 20, and 15) 
respectively. 
 

 
Figure 7: Joint angles of the generated and desired 

circle trajectory of the three-link robot 

 

Figure 8: Joint angles of the generated and desired 
square trajectory of the three-link robot 

 

Figure 9: Joint angles of the generated and desired 
triangle trajectory of the three-link robot 

PSO algorithm is implemented in MATLAB 
program R2015b. The number of variables equals 
to 3 according to three joint angles (θ1, θ2, θ3), the 
population size =100. Simulation of the PSO 
algorithm is performed in order to obtain the best 
joint angles (θ1, θ2, θ3) of three-link robot arm 
within their angles ranges as illustrated in 
previous sections. The minimum fitness functions 
of PSO results that are computed from eq. (9) of 

three trajectories are simulated as in the following 
Figures 10-12. 

 

 
Figure 10: The fitness function of PSO generated 

circle trajectory 

 

Figure 11: The fitness function of PSO generated 
square trajectory 

 

Figure 12: The fitness function of PSO generated 
triangle 

The velocity is modulated and evaluated while 
the PSO is running as in equations (10, 11) 
below.  
The time (t) is computed as:  
 
 t = elapsed time

no.of iterations 
                                              

(10) 
The velocity (vi) while PSO is running, is 
obtained from the following equation: 
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  vi = △ θ𝑖(j)  
t 

                                                     (11) 
 
Where △ θ𝑖(j) : the change of joint angle. It is the 
difference between the next joint angles and old 
joint angles while i=1…3 and j=1: number of 
iterations. The three velocities for each three-link 
robot joint angle are simulated with iterations 
where, the first, second and third velocities 
marked as (v1, v2, v3) respectively. Three colors 
are consisting of three velocities: blue line 
denoted v1, red color marked v2 and green color 
labeled v3 as in the Figures 13-15. 

 

Figure 13: Velocities with iterations of circle 
trajectory 

 

Figure 14: Velocities with iterations of square 
trajectory 

 

 
Figure 15: Velocities with iterations of triangle 

trajectory 
Figures 13-15 show those three velocities for 
every three-link robot joint angle results of each 
trajectory that are depending on the eqs. (10, 11). 
These velocities results have been given an 
indication that the three-link robot is moving fast 
during the PSO algorithm. The main simulation 
results of all the enhanced work are illustrated as 
in Table 2. From all results of Table 2 below for 
minimum fitness functions errors and from 
Figures 10-12, the following can be summarized:  
The best-generated end-effectors results of the 
three-link robot are obtained for three trajectories: 
circle, square and triangle. These results are too 
close to the desired trajectories as shown in 
Figures 4-6.    
1- The best generated three joint angles 
(𝜃1, 𝜃2, 𝜃3) results of the three-link robot are 
evaluated for the three trajectories: circle, square 
and triangle. These angles are too near to the 
desired trajectories as in Figures 7-9.    
2- The elapsed time is demonstrated in each 
trajectory and it is a too short time as in Table 2 
results. This is due to the short elapsed time of the 
PSO algorithm implementation and is too fast. 
3- The best generated results of three 
trajectories are enhanced as compared with 
another result that is presented by earlier studies 
as the following: 
• The best-generated end-effector positions of 
circle trajectory are more accurate and smoother 
than another work in [7, 9] as shown in Figure 4.  
• The simulation results of the best end-effector 
positions are more accurate and smoother than 
another work as in [16] for three trajectories: 
circle, square and triangle as shown in Figures 4-
6.  In the related work [7, 16] the generated circle, 
square and triangle trajectories are very rough 
trajectories in some areas of each trajectory in 
their simulation work. 
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Table 2: Work results of the three-link redundant robot manipulator 

Trajectory Desired start 
point end-
effector’s 
robot (m)  

Generated  start 
point with PSO 
end-effector’s 
robot (m) 

Desired goal point 
end-effector’s robot 
(m) 

Generated  goal 
point with PSO 
end-effector’s 
robot (m)  

Min.fitness 
function 
error 
 

Elapsed 
time 
(seconds) 

Circle (4,2) (4.0131,2.0059)  (3.9999,1.9999) (3.9957,1.9925)    0.0129 20.903981 
Square (2,1) (2.005,1.0380)       (2,1) (2.0435, 1.0138)    0.0097 11.747171 
Triangle  (2,1) (2.0080,1.0058)         (2,1)   (2.0042, 1.0050)    0.0030  15.729663 

 
5. Conclusion 
From the simulation results of this paper for the 
three-link robot manipulator, the following can be 
concluded:  
1) The best three joint angles are computed using 
PSO algorithm within the limit joint angles 
without using inverse kinematics equations.  
2) The best end-effector positions are evaluated.  
3) The circle, square and triangle of PSO 
generated-trajectories are enhanced and are 
smoother than the trajectories of other related 
studies. In other related works, there are rough 
trajectories in some areas.  This is the main 
novelty of this paper. 
4) This PSO algorithm is too fast due to two 
reasons: the first is the short elapsed time in each 
trajectory and the second is the demonstration the 
velocities results for each three-link robot joint 
angle results for every trajectory.  
5) The elapsed time of circle trajectory equals to 
20.903981 seconds, the elapsed time of square 
trajectory equals to 11.747171 seconds and the 
elapsed time of triangle trajectory equals to 
15.729663 seconds.  
6) The minimum fitness function results are 
acceptable for three trajectories.  
7) Three trajectories are optimum trajectories 
with respect to best end-effectors and best joint 
angles. 
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