
Engineering and Technology Journal Vol. 37, Part A, No. 7, 2019

Hind Z. Khaleel
Control and Systems
Engineering Department,
University of Technology,
Baghdad, Iraq,
60175@uotechnology.edu.iq

Received on:01/03/2019
Accepted on: 17/04/2019
Published online on: 25/07/2019

Enhanced Solution of Inverse Kinematics for
Redundant Robot Manipulator Using PSO

Abstract- Kinematics of the robot is divided into two parts: the forward
kinematics, which evaluates the end-effector’s position from joint angles, and the
inverse kinematics, which demonstrates the joint angles from the end-effector's
position. The solution of the inverse kinematics problem is too difficult and
complicated for the redundant robot arm manipulator. A Particle Swarm
Optimization (PSO) algorithm is an effective method to solve global optimization
problems. This paper presents the solution of inverse kinematics problem of a
three-link redundant manipulator robot arm using PSO without using the inverse
kinematics equations. The circle, square and triangle generated trajectories using
PSO are enhanced as compared with the trajectories of other works. The
enhanced PSO algorithm is successfully found the best generating three joint
angles and the best generating end-effector's position of a three-link robot arm.
Then according to these joints and positions the circle, square and triangle path
trajectories, results are smoother than the path trajectories of other work. This
enhanced solution of inverse kinematics using PSO algorithm is too fast due to
the short elapsed time in every iteration of trajectory. Besides that, these
velocities results have been given evaluated and give an indication that the three-
link robot is moving fast during the PSO algorithm. The elapsed time of circle
trajectory equals to 20.903981 seconds, the elapsed time of square trajectory
equals to 11.747171 seconds and the elapsed time of triangle trajectory equals to
15.729663 seconds. MATLAB R2015b program is used in order to simulate all
results. The main benefit of this work is to solve two problems: 1) inverse
kinematics is too complex equations of the three-link robot. The solutions of best
joint angles using PSO are computed within joint limits without using inverse
kinematics equations. 2) Another problem, this work is enhanced three
trajectories with respect to the best joint angles and reaches 96% percent as
compared with another work. The error is too small according to the start and
goal PSO generated points for each trajectory.

Keywords- Three-link, inverse kinematics, PSO.
How to cite this article: H.Z. Khaleel, “Enhanced Solution of Inverse Kinematics for Redundant Robot Manipulator Using PSO,” Engineering
and Technology Journal, Vol. 37, Part A, No. 7, pp. 241-247, 2019.

1. Introduction
In modern life, robots are able to impact on many
applications such as industrial manufacturing,
healthcare transportation, and exploration of
space and underwater. Robots can assist humans
in their complex tasks [1,2]. Manipulator pointed
to the robotic arm. Manipulator redundant robot
is consisted of links connected by joints like a
chain. Kinematics problem is represented by the
manipulator motion without the perception of
forces and torques [3]. In general, the inverse
kinematics problem of the robot is to get the
values of the joint positions given end-effector's
position and orientation [1]. There are many
artificial intelligence methods solved an inverse
kinematics problem of manipulator robot. Some
of them are: the numerical algorithm which is
based on the fuzzy logic approach that is used for
solving the inverse kinematic problem of a
SCARA robot. This method is usually difficult,
computationally expensive and always gives an

approximate solution with large error especially
in the corners of robot workspace. In general, one
of the most drawbacks of fuzzy logic is that it
requires high computation time [4]. The inverse
kinematics problem is solved using conventional
Genetic Algorithm GA and the Continuous GA
(CGA) for robot manipulators. The number of
generation convergence speed of the CGA and
the average execution time is better than the
conventional GA algorithm. The average
execution times for these GA algorithms are too
long [5]. Many researches have done using
Neural Networks. One of the latest was done
using back-propagation neural network algorithm
of multi-neural networks and solved I.K. problem
of the Reis Robot–RV12L robot manipulator.
However, the design was too complex with eight
large trained Neural Networks [6]. Genetic
Algorithm (GA) and Neural Network (NN)
approach solved the problem of inverse
kinematics for the three-link redundant robot. The

http://dx.doi.org/10.30684/etj.37.7A.4
 2412-0758/University of Technology-Iraq, Baghdad, Iraq

This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

 241

http://dx.doi.org/10.30684/etj.37.7A.4
http://creativecommons.org/licenses/by/4.0
mailto:60175@uotechnology.edu.iq
https://orcid.org/0000-0002-6020-158X

Engineering and Technology Journal Vol. 37, Part A. No. 7, 2019

sine wave and the circle trajectories are also
simulated in MATLAB program. The simulation
of trajectories results has little accuracy and the
generated circle trajectory is not smooth in all
areas of trajectory [7]. Particle Swarm
Optimization (PSO) is derived from the natural-
inspired swarm behavior of some animals such as
bird flocks and fish schoolings. It has many
advantages such as simple implementation, the
global optimal solution is founded with high
probability and efficiency, fast converges, no
overlap and mutate, the computational time is
short. PSO is good for solving difficult problems
in order to find accurate mathematical models [8].
In this paper, the inverse kinematics problem is
solved and enhanced the trajectories of the three-
link robot manipulator using PSO.

2. Forward Kinematics and Trajectory
Equations of Redundant Robot
Manipulator

In this section, the forward kinematics and
trajectory equations are illustrated as in the
following:

I. Forward Kinematics and Joints Limitations
The forward kinematics problem of the robot
manipulator has evaluated the end-effector's
position and orientation from the given joint
angles values [4, 5]. In this paper, the three-link
redundant robot manipulator is used as shown in
Figure 1.
Figure 1 shows that the three lengths of robot
manipulator (a1, a2, a3) with three joint angles
(TH1, TH2, TH3). Three links are connected with
three joints. Three-link redundant robot
manipulator forward kinematics equations can be
written as in Eqs. (1) and (2) [7,9].
 xE = a1 cos(TH1) + a2 cos(TH1 + TH2)

+ a3 cos(TH1 + TH2 + TH3)
yE = a1 sin(TH1) + a2 sin(TH1 + TH2) +
a3sin (TH1 + TH2 + TH3)
(1)
Where (xE, yE) refers to the three-link robot end-
effector's position. While (THE) refers to three-
link robot end-effector's orientation as in Eq. (2):
 THE = TH1 + TH2 + TH3
(2)
The link parameter table of a three-link redundant
robot manipulator is illustrated in Table 1.
The four parameters in Table I are called: ai=link
length, αi=link twist, di=link offset, and θi=joint
angle. The three joint angles are: θ1∗= TH1,
θ2∗= TH2 and θ3∗= TH3. The * symbol means that
the angles are changed values with certain ranges.

The three joints limitations ranges are (0 < TH1<
π, - π < TH2< 0, and -π/2 < TH3< π/2).

Figure 1: Three-link redundant robot manipulator

[7]

Table 1: Link parameter table of the three-link
redundant robot manipulator

Link no. ai (m) αi (deg.) di (m) θi (deg.)
1 2 0 0 θ1∗
2 2 0 0 θ2∗
3 2 0 0 θ3∗

II. Trajectory Equations
Three-link robot redundant performs three
trajectories. These trajectories Eq. (3-6) are
illustrated as below:
The first circle trajectory equation is expressed as
in Eq. (3) [7, 9]:
 yp = yc + r sinφ
(3)
Where (xp, yp) is the desired circle end-effector's
position of the robot arm, (xc, yc) is circle's
center position, r is the radius of the circle and the
angle as (φ) is [0:2π]. The desired circle of end-
effector's orientation is presented as in Eq. (4) [7,
9]:
THd = tan−1 (yp /xp)
(4)
Parametric Cartesian space trajectory equations
are used to express the square and the triangular
trajectories of the three-link robot as shown in
Figure 2.
These parametric Cartesian space trajectory eqs.
(5) and (6) can be written as [10, 11]:
X(u) = Xa + u(Xb − Xa)
(5)
Y(u) = Ya + u(Yb − Ya)
(6)
Where (Xa, Ya): start point; (Xb, Yb): endpoint
(goal point), (u= 0:1). (X, Y): coordinates of end-
effector's robot.

242

Engineering and Technology Journal Vol. 37, Part A. No. 7, 2019

Figure 2: Trajectory line path [10, 11]

3. Solving Inverse Kinematics for
Redundant Robot Manipulator using PSO
This section describes the introduction of PSO
and the enhanced solving inverse kinematics for
redundant robot manipulator using PSO.

I. Introduction of Particle Swarm Optimization
(PSO)
Particle Swarm Optimization (PSO) was derived
from the natural-inspired swarm behavior of
some animals such as bird flocks and fish
schoolings. Russell Eberhart and James Kennedy
have invented the PSO algorithm. The natural
behavior of swarms has been used in order to
solve the optimization problem [9]. The basic
idea of PSO is initialized by randomly generating
a swarm of particles. Each particle (i) has position
namely (𝑥𝑥i), with a certain velocity namely (𝑣𝑣i).
Swarm of particles is executed a random iterative
search in the space of possible 𝑛𝑛-dimensional
solution vectors. This algorithm is related to the
objective function value 𝑓𝑓 = (𝑥𝑥i), where 𝑓𝑓 is the
function to be minimized. After iterations, the
optimal solution is accomplished. At every
iteration, the positions of particles are updated.
They depend on two main elements: first is the
best historical position direction achieved by each
particle individually denotes the individual
element (pbest). Second is the position achieved
by any particle in the swarm, denotes the global
element (gbest). In each iteration, these two
elements are updated. The following two main
Eqs. (7) and (8) of the PSO algorithm are:

𝑣𝑣𝑖,𝑗𝑘+1 = 𝑣𝑣𝑖,𝑗𝑘 + 𝑐1𝑟1�𝑥𝑥𝑏𝑒𝑠𝑡𝑖,𝑗𝑘+1 − 𝑥𝑥𝑖,𝑗𝑘 � +
𝑐2𝑟2(𝑥𝑥𝑔𝑏𝑒𝑠𝑡𝑗𝑘 − 𝑥𝑥𝑖,𝑗𝑘)
(7)

𝑥𝑥𝑖,𝑗𝑘+1 = 𝑥𝑥𝑖,𝑗𝑘 + 𝑣𝑣𝑖,𝑗𝑘+1
(8)

Where k: denotes the 𝑘𝑡ℎ generation
 𝑥𝑥𝑖,𝑗𝑘 : 𝑗𝑡ℎComponent of the 𝑖𝑡ℎparticle’s position
vector
𝑥𝑥𝑖,𝑗𝑘+1: 𝑗𝑡ℎComponent of the 𝑖𝑡ℎnew particle’s
position vector

𝑣𝑣𝑖,𝑗𝑘 : 𝑗𝑡ℎComponent of the 𝑖𝑡ℎparticle’s velocity
vector
𝑣𝑣𝑖,𝑗𝑘+1: 𝑗𝑡ℎComponent of the 𝑖𝑡ℎnew particle’s
velocity vector
𝑟1, 𝑟2: Random numbers values between 0 and 1
𝑐1, 𝑐2: called cognition and social constants
respectively.
The constants values range of (0, 2).
𝑥𝑥𝑏𝑒𝑠𝑡𝑖: Best positions experienced of ith particle
𝑥𝑥𝑔𝑏𝑒𝑠𝑡𝑗: 𝑗𝑡ℎComponent of whole swarm [12, 13,
14, 15].

II. Enhanced Solving Inverse Kinematics for
Redundant Robot Manipulator using PSO
This work presents the solutions of inverse
kinematics without using the inverse kinematics
equations. The inputs initializations are the
randomly three joint angles within the three joints
limitations ranges (section (2.1)) of the three-link
robot arm. After applying the PSO algorithm
procedure as mention in the previous section (3.1)
with the fitness, function eq. (9). The position and
velocity of particles (θ1, θ2, and θ3) are adapted
depending to their velocity and positions
equations (7, 8) within the joint angles limit. The
outputs are three best joint angles. These three
best joint angles are interring as inputs to the
forward kinematics eqs. (1,2) in order to find the
best end-effector positions and orientation. After
that, the best end-effector positions and
orientations are inputs to every three trajectories
(circle, triangle, square) eqs. (3-6) in order to
achieve the best three generated end-effector
positions and joint angles as shown in Figure 3.
Each joint angle variable of three-link redundant
robot manipulator arm is expressed as a particle:
θi = (θ1, θ2, θ3). Each particle has a velocity during
the particle movement: 𝑣𝑣I = (𝑣𝑣θ1, 𝑣𝑣θ2, 𝑣𝑣θ3). The aim
of the PSO algorithm is to minimize the objective
function by adjusting joint angles or (θi) and get
the best solution of joint angles. The
minimization of fitness function is represented as
in eq. (9) [13]:

 𝑓𝑓(θ) = ||(θT − θ𝑖)||
(9)

Where θT is the target joint angles and θ𝑖 is the
estimated joint angles for i=1:3. If the min error
fitness function is equal or less than 0.0001 and
the iterations times for each trajectory is equal or
less than the values in the below flowchart, then
finish the algorithm or if it is larger than 0.0001
choose another joint angle within joints
limitations. Ite1, Ite2, and Ite3 are the PSO

243

Engineering and Technology Journal Vol. 37, Part A. No. 7, 2019

iteration times for circle, square and triangle
trajectories individually as shown in Figure 3.

Figure 3: Flowchart of the enhanced work using

PSO algorithm

4. Simulation Results
In this work, three trajectories (circle, triangle,
and square) are simulated of the three-link robot
manipulator. The circle trajectory is simulated
according to the eq. (3) as in Figure 4.
The square and triangle trajectories are also
simulated due to parametric Cartesian space
trajectory eqs. (5) and (6) as shown in Figures 5
and 6.

Figure 4: End-effector’s three-link robot of two

circle trajectories: generated with PSO and desired

Figure 5: End-effector’s three-link robot of two

square trajectories: generated with PSO and desired

Figure 6: End-effector’s three-link robot of two
triangle trajectories: generated with PSO and

desired

The three joint angles of the desired and the
generated circle trajectories are simulated of the
three-link robot for three trajectories (circle,
triangle, and square) and all results of the
generated three joint angles are close to the
desired three joint angles as shown in Figures 7-9.
Where in these Figures the x-axis presents the
iterations and the y-axis marked as the angles in
radian. TH1d, TH2d, and TH3d are the first,
second and third desired joint angles respectively.
While TH1g, TH2g, and TH3g are the first,
second and third generated of joint angles. The

1.5 2 2.5 3 3.5 4 4.5

x(m)

0.5

1

1.5

2

2.5

3

3.5

y(
m

)

Desired trajectory

Generated trajectory

Generated start point

Desired start point

1.5 2 2.5 3 3.5 4 4.5

x(m)

0.5

1

1.5

2

2.5

3

3.5

y(
m

)

Desired trajectory

Generated trajectory

Generated start point

Desired start point

1.5 2 2.5 3 3.5 4 4.5

x(m)

0.5

1

1.5

2

2.5

3

3.5

y(
m

)

Desired trajectory

Generated trajectory

Generated start point

Desired start point

) 3θ 2,θ 1,θStart Initialization of joint angles (
within ranges, initial and desired positions of

effector-trajectory end

the best Forward kinematics to find
effector-position and orientation of end

PSO algorithm to find best joint
angles with min. fitness function error

equations iesChoose one of trajector
(circle, triangle, square)

 ≤Is the min. error
0.0001

1 ≤ 212Ite
2≤ 100Ite
3≤ 209Ite

Finish

Yes

No

244

Engineering and Technology Journal Vol. 37, Part A. No. 7, 2019

three trajectories (circle, triangle, and square)
numbers of iterations are: (32, 20, and 15)
respectively.

Figure 7: Joint angles of the generated and desired

circle trajectory of the three-link robot

Figure 8: Joint angles of the generated and desired
square trajectory of the three-link robot

Figure 9: Joint angles of the generated and desired
triangle trajectory of the three-link robot

PSO algorithm is implemented in MATLAB
program R2015b. The number of variables equals
to 3 according to three joint angles (θ1, θ2, θ3), the
population size =100. Simulation of the PSO
algorithm is performed in order to obtain the best
joint angles (θ1, θ2, θ3) of three-link robot arm
within their angles ranges as illustrated in
previous sections. The minimum fitness functions
of PSO results that are computed from eq. (9) of

three trajectories are simulated as in the following
Figures 10-12.

Figure 10: The fitness function of PSO generated

circle trajectory

Figure 11: The fitness function of PSO generated
square trajectory

Figure 12: The fitness function of PSO generated
triangle

The velocity is modulated and evaluated while
the PSO is running as in equations (10, 11)
below.
The time (t) is computed as:

 t = elapsed time

no.of iterations

(10)
The velocity (vi) while PSO is running, is
obtained from the following equation:

0 5 10 15 20 25 30 35

Iterations

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

A
ng

le
s

(ra
d)

TH1d

TH2d

TH3d

TH1g

TH2g

TH3g

0 2 4 6 8 10 12 14 16 18 20

Iterations

-2

-1

0

1

2

3

4

A
ng

le
s

(r
ad

)

TH1d

TH2d

TH3d

TH1g

TH2g

TH3g

0 5 10 15

Iterations

-2

-1

0

1

2

3

4

A
ng

le
s

(r
ad

)

TH1d

TH2d

TH3d

TH1g

TH2g

TH3g

0 50 100 150 200 250

iterations

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

co
st

 fu
nc

tio
n

0 10 20 30 40 50 60 70 80 90 100

iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

co
st

 fu
nc

tio
n

0 50 100 150 200 250

iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

co
st

 fu
nc

tio
n

245

Engineering and Technology Journal Vol. 37, Part A. No. 7, 2019

 vi = △ θ𝑖(j)
t

 (11)

Where △ θ𝑖(j) : the change of joint angle. It is the
difference between the next joint angles and old
joint angles while i=1…3 and j=1: number of
iterations. The three velocities for each three-link
robot joint angle are simulated with iterations
where, the first, second and third velocities
marked as (v1, v2, v3) respectively. Three colors
are consisting of three velocities: blue line
denoted v1, red color marked v2 and green color
labeled v3 as in the Figures 13-15.

Figure 13: Velocities with iterations of circle
trajectory

Figure 14: Velocities with iterations of square
trajectory

Figure 15: Velocities with iterations of triangle

trajectory
Figures 13-15 show those three velocities for
every three-link robot joint angle results of each
trajectory that are depending on the eqs. (10, 11).
These velocities results have been given an
indication that the three-link robot is moving fast
during the PSO algorithm. The main simulation
results of all the enhanced work are illustrated as
in Table 2. From all results of Table 2 below for
minimum fitness functions errors and from
Figures 10-12, the following can be summarized:
The best-generated end-effectors results of the
three-link robot are obtained for three trajectories:
circle, square and triangle. These results are too
close to the desired trajectories as shown in
Figures 4-6.
1- The best generated three joint angles
(𝜃1, 𝜃2, 𝜃3) results of the three-link robot are
evaluated for the three trajectories: circle, square
and triangle. These angles are too near to the
desired trajectories as in Figures 7-9.
2- The elapsed time is demonstrated in each
trajectory and it is a too short time as in Table 2
results. This is due to the short elapsed time of the
PSO algorithm implementation and is too fast.
3- The best generated results of three
trajectories are enhanced as compared with
another result that is presented by earlier studies
as the following:
• The best-generated end-effector positions of
circle trajectory are more accurate and smoother
than another work in [7, 9] as shown in Figure 4.
• The simulation results of the best end-effector
positions are more accurate and smoother than
another work as in [16] for three trajectories:
circle, square and triangle as shown in Figures 4-
6. In the related work [7, 16] the generated circle,
square and triangle trajectories are very rough
trajectories in some areas of each trajectory in
their simulation work.

0 5 10 15 20 25 30 35

iterations

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

ve
lo

ci
ty

 (r
ad

./s
ec

.)

v1

v2

v3

0 2 4 6 8 10 12 14 16 18 20

iterations

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

ve
lo

ci
ty

 (r
ad

./s
ec

.)

v1

v2

v3

0 2 4 6 8 10 12 14

iterations

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

ve
lo

ci
ty

 (r
ad

./s
ec

.)

v1

v2

v3

246

Engineering and Technology Journal Vol. 37, Part A. No. 7, 2019

Table 2: Work results of the three-link redundant robot manipulator

Trajectory Desired start
point end-
effector’s
robot (m)

Generated start
point with PSO
end-effector’s
robot (m)

Desired goal point
end-effector’s robot
(m)

Generated goal
point with PSO
end-effector’s
robot (m)

Min.fitness
function
error

Elapsed
time
(seconds)

Circle (4,2) (4.0131,2.0059) (3.9999,1.9999) (3.9957,1.9925) 0.0129 20.903981
Square (2,1) (2.005,1.0380) (2,1) (2.0435, 1.0138) 0.0097 11.747171
Triangle (2,1) (2.0080,1.0058) (2,1) (2.0042, 1.0050) 0.0030 15.729663

5. Conclusion
From the simulation results of this paper for the
three-link robot manipulator, the following can be
concluded:
1) The best three joint angles are computed using
PSO algorithm within the limit joint angles
without using inverse kinematics equations.
2) The best end-effector positions are evaluated.
3) The circle, square and triangle of PSO
generated-trajectories are enhanced and are
smoother than the trajectories of other related
studies. In other related works, there are rough
trajectories in some areas. This is the main
novelty of this paper.
4) This PSO algorithm is too fast due to two
reasons: the first is the short elapsed time in each
trajectory and the second is the demonstration the
velocities results for each three-link robot joint
angle results for every trajectory.
5) The elapsed time of circle trajectory equals to
20.903981 seconds, the elapsed time of square
trajectory equals to 11.747171 seconds and the
elapsed time of triangle trajectory equals to
15.729663 seconds.
6) The minimum fitness function results are
acceptable for three trajectories.
7) Three trajectories are optimum trajectories
with respect to best end-effectors and best joint
angles.

References
[1] S. Bruno, K. Oussama, “Springer Handbook of
Robotics,” Springer, 2nd edition, Cham, 2016.
[2] B. Mordechai, M. Francesco, “Elements of
Robotics,” Springer, Cham, 2018.
[3] W.S. Mark, H. Seth, and V. Mathukumalli,
“Robot Modeling and Control,” John Wiley & Sons,
Inc., 1st edition, 2005.
A. Francesco, B. Alberto, A. Riccardo, and F.
Rodolfo, “A Fuzzy Logic to Solve The Robotic
Inverse Kinematic Problem,” Applied Mechanics and
Materials, Vol. 772, pp. 488-493, 2015.
[4] M. Shaher, S.A. Zaer, and M.A. Othman,
“Solution of Inverse Kinematics Problem using

Genetic Algorithms,” Applied Mathematics &
Information Sciences, Vol. 10, No. 1, pp. 225-233,
2016.
[5] A.R. Firas, R.K. Azad, and J.H. Amjad, “Inverse
Kinematics Solution of Robot Manipulator End-
Effector Position Using Multi-Neural Networks,” Eng.
& Tech. Journal, Vol. 34, No.7, pp. 1360-1368, 2016.
[6] Z.K. Hind, “Inverse Kinematics Solution for
Redundant Robot Manipulator using Combination of
GA and NN,” Al-Khwarizmi Engineering Journal,
Vol. 14, No. 1, pp. 136-144, 2018.
[7] A. Zeineb, G. Adel, B.B. Lazhar, H. Mohamed,
and A.A.E. Nasser, “Review of Optimization
Techniques Applied for The Integration of Distributed
Generation From Renewable Energy Sources,”
ELSEVIER, Renewable Energy, Vol. 113, pp. 266-
280, 2017.
[8] V.D. Adrian, “Neural Network based Inverse
Kinematics Solution for Trajectory Tracking of a
Robotic Arm,” ELSEVIER, The 7th Int. Conference on
Interdisciplinarity in Engineering, 2014.
[9] B. Luigi, M. Claudio, “Trajectory Planning for
Automatic Machines and Robots,” Springer, 2008.
[10] J.H. Edwin, S. Gilbert, “Calculus Volume 3,”
OpenStax, 2016.
[11] S.Y. Xin, “Nature-Inspired Optimization
Algorithms,” ELSEVIER, 1st edition, 2014.
[12] R. Nizar, M.A. Adel, “Inverse Kinematics Using
Particle Swarm Optimization, A Statistical Analysis,”
ELSEVIER, Int. Conference on Design and
Manufacturing (IConDM), Vol. 64, pp. 1602-1611,
2013.
[13] Z. Panfeng, M. Xihui, M. Zhenshu, and D.
Fengpo, “An Adaptive PSO-Based Method for Inverse
Kinematics Analysis of Serial Manipulator,” Int.
Conference on Quality, Reliability, Risk, Maintenance,
and Safety Engineering (ICQR2MSE), Chengdu,
2012.
[14] A. Kaveh, “Advances in Metaheuristic
Algorithms for Optimal Design of Structures,” chapter
2, Springer, 2014.
[15] V.D. Adrian, “ANFIS Based Solution to the
Inverse Kinematics of a 3DOF Planar Manipulator,”
ELSEVIER, The 8th Int. Conference on
Interdisciplinary in Engineering, pp. 526-533, 2014.

247

https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Edwin+%22Jed%22+Herman&search-alias=books&field-author=Edwin+%22Jed%22+Herman&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Gilbert+Strang&search-alias=books&field-author=Gilbert+Strang&sort=relevancerank

