Document Type : Research Paper

Authors

1 Civil Engineering Department, University of Technology, Baghdad, - Iraq

2 Civil Engineering Department, University of Technology - Iraq

3 Environmental Research Center, University of Technology - Iraq

Abstract

In this  study,  Al-Diwaniyah  River  within  Al-Diwaniyah  Governorate was monitored for a set of chemical, physical,and bacteriological parameters for the assessment of water quality during January to July 2018. Water quality maps for  this  river  were  plotted  torepresent  the  change  in  each  parameter  during  the study  period  using  GIS  program.  Three  sampling  stations  along  the  river  and eighteen parameters were selected: air temperature, water temperature, turbidity, pH  value,  electrical  conductivity  (EC),  biochemical  oxygen  demand  (BOD), dissolved oxygen (DO), alkalinity, chloride, Sulfate, total suspended solids (TSS), total  dissolved  solids  (TDS),  calcium,  magnesium,  total  hardness,  lead,  total coliform,and  Escherichia  coli  bacteria.  The  results  explained  that the  water temperature  varied between (15-31) °C. pH  values ranged between (7.4-8.2) and river  water  was  considered  as  slightly  alkaline  with  alkalinity  concentrations between (124-176) mg/L. Most waterof the  river was very  hard according to the values of hardness that varied between (384-531) mg/L. The turbidity values of the river  ranged  between  (1.5-35.2)  NTU.Electrical  conductivity  was  between  (998-1380)  μs/cm.  Total  dissolved  solids  and  total  suspended  solids  were  their  values varied  between  (620-932)mg/L  and  (2-28)  mg/L  respectively.  It  was  found  that among  measured  positive  ions,  calcium  concentrations  were  higher  than  the magnesium  concentrations,  ranging  between  (71-175)  mg/L  and  (21-67)  mg/L respectively.  On  the  other  hand,  when  studying  Anions, sulfate  concentrations were  higher  than  chloride  concentrations  with  values  ranging  from  (152-339) mg/L  and  (101-167)  mg/L  respectively.  River  water  contained  dissolved  oxygen concentrations  ranging  (6.3-10.1)  mg/L  while  concentrations  of  biochemical oxygen  demand  varied  between  (0.6-7.6)  mg/L.  Lead  ranged  in  valuesbetween (0.001-0.017)  mg/L.  The  study  found  that  bacteriological  parameters,  including total coliform and E. coli, ranged between (500-1600) MPN/100ml and (30-1600) MPN/100ml respectively. In general, the parameters of Turbidity, SO4, BOD5, TC and E. coli have exceeded Iraqi standards for drinking water IQS: 417 while the rest  of  the  parameters  were  within  these  limits.  It  revealed  that  station  2  which was  located  only  at  ashort  distance  from  the  site  of  the  wastewater  treatment plant  was  more  polluted  than  the  other  two  stations.  The  results  showed  that  the water  of  the  river  is neithersuitable  for  drinking,  nor  suitable  for  swimming according  to  the  high  bacterial  pollution  in  addition  to  the danger  and  threat  to aquatic life but can be used for irrigation purposes.

Keywords

Main Subjects

[1] K.S. Issa and F.F. Hassan. “Evaluation of
Groundwater Quality in Selected Areas of Najaf
Governorate for Different Purposes,” Al-Qadisiyah
Journal for Engineering Sciences, Vol. 10, No. 1, pp. 36-
53, 2017.
[2] A.O. Nafi “Quality of Pipe Water Supply in AlbuAitha Rural Area of Baghdad,” Iraqi Journal of
Community Medicine, Vol. 23, No. 4, pp. 231-235, 2010.
[3] O.M. Altansukh and G.S. Davaa, “Application of
Index Analysis to Evaluate the Water Quality of the Tuul
River in Mongolia,” Journal of Water Resources and
Protection, Vol. 3, No. 6, pp. 398-414, 2011.
[4] S.D. Al-Saffar, A.E. Ali, and A.Z. Al-Joboury.
“Identifying Factors Affecting Water Resources of Iraq
by Application of Knowledge Discovery in Databases,”
Al-Qadisiyah Journal for Engineering Sciences, Vol. 10,
No. 3, pp. 319-337, 2017.
[5] A.M. Rabee, B.M. Abdul-Kareem and A.S. AlDhamin, “Seasonal Variations of Some Ecological
Parameters in Tigris River Water at Baghdad Region,
Iraq,” Journal of Water Resource and Protection, Vol. 3,
No. 4, pp. 389-410, 2017.
[6] E.S. Hussein and S.A. Abed. “Water quality index for
Al-Gharraf River, southern Iraq,” The Egyptian Journal
of Aquatic Research, Vol. 43, No. 2, pp. 117-122, 2017.
[7] Americans Public Health Association, “Standard
Methods for Examination of Water and Wastewater,” pp.
304-1136, 2005.
[8] World Health Organization, “Guidelines for drinkingwater quality. Vol. 2, Health criteria and other supporting
information: addendum. No. WHO/EOS/98.1. Geneva,”
pp. 307-488, 1998.
[9] World Health Organization, “Guidelines for drinkingwater quality: recommendations,” Vol. 1, pp. 522-603,
2004.
[10] World Health Organization, “Guidelines for
drinking-water quality: second addendum. Vol. 1,
Recommendations,” pp. 487-569, 2008.
[11] Canadian Council of Ministers of the Environment,
“Canadian Water Quality Guidelines for the Protection of
Agricultural Water Uses,” Excerpt from Publication No.
1299, pp. 12-17, 2005.
[12] Canadian Council of Ministers of the Environment,
“Canadian Water Quality Guidelines for the Protection of
Aquatic. Excerpt from publication No. 1299,” pp. 11-17,
2007.
[13] Iraqi Drinking-Water Standard, “IQS: 417,” Central
Organization for Quality Control and Standardization,
Council of Ministers, Republic of Iraq, pp. 1-9, 2001.
[14] Iraqi Drinking-Water Standard, “IQS: 417,” Central
Organization for Quality Control and Standardization,
Council of Ministers, Republic of Iraq, pp. 1-9, 2009.
[15] Rivers Maintenance, “System Maintenance of River
and Public Water Pollution in Iraq,” pp. 2-13, 2001.
[16] A.S. Robert and D.W. Westcot. “Water quality for
agriculture. Vol. 29. Rome: Food and Agriculture
Organization of the United Nations,” pp. 143-148, 1985.
[17] Y.S. Rashed and A.K. Guven, “Estimation of
Geomor- phological Parameters of Lower Zab RiverBasin by Using GIS-Based Remotely Sensed Image,”
Water Resources Management, Vol. 27, No. 1, pp. 209-
219, 2013.
[18] M.N. Majeed, S.A. Al-Din, L.A. Saleh and G.K.
Aswed, “Modeling the water quality index and climate
variables using an artificial neural network and non-linear regression,” International Journal of Engineering &
Technology, Vol. 7, No. 3, pp. 1346-1350, 2018.