Document Type : Research Paper


University of Technology, Materials Eng. Department. Baghdad, Iraq,


Polyvinyl-chloride (PVC) was dehydrochlorinated by alkaline-solution (NaOH) in determining molarity (3.0 M) followed by grafting with acrylamide (AM) monomer onto dehydrochlorinated PVC (DHPVC) backbone by free-radical graft copolymerization to produce new grafted polymer referred as graft 3M. Then investigated the effect of polyvinyl pyrrolidone (PVP) addition on the grafted polymer. Membranes from pure PVC, graft 3M, and graft 3M/ PVP were synthesis via a phase inversion method. The successful AM grafting onto PVC was confirmed by characterization of the membranes by Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) analysis, porosity, pore size, and contact angle measurements. The new synthesis (graft 3M) and (graft 3M/ PVP) membranes show excellent hydrophilicity in compared to pure PVC membranes, confirmed by higher pure water flux (PWF). The graft 3M/ 3wt.% PVP membrane exhibited the highest pure water permeate flux was about 540 L/m2 h at 28 °C of feed temperature and 1bar of pressure, i.e. was improved by about 270 times compared to the unmodified PVC membrane and 2.35 times compared to the graft 3M membrane.


[1] M. Mulder, "Basic principles of Membrane Technology", 2nd edition, Dordrecht, NL: Kluwer Academic Publishers, USA, 1996.
[2] R. W. Baker, "Membrane Technology and Applications", 3rd edition, John Wiley and Sons Ltd, United Kingdom, 2012.
[3] A. Lee, J. W. Elam, and S. B. Darling, "Membrane Materials for Water Purification: Design, Development, and Application", Environ. Sci.: Water Res. Technol., Vol.2, pp. 17-42, 2016.
[4] R. W. Baker, "Membrane Technology and Applications", 2nd edition, John Wiley and Sons Ltd, Chichester, 2004.
[5] M. L. Pellegrin, J. Aguinaldo, S. Arabi, M. E. Sadler, K. Min, M. Liu, C. Salamon, A. D. Greiner, J. Diamond, R. Mc Candless, C. Owerdieck, J. Wert and L. P. Padhye, "Membrane Processes", Water Environment Research, Vol. 85, pp. 1092-1175, 2013.
[6] N. Hilal, H. Al-Zoubi, N. A. Darwish, A. W. Mohamma and M. Abu Arabi, " A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy", Desalination, Vol. 170, No.3, pp. 281-308, 2004.
[7] L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot and P. Moulin, "Reverse osmosis desalination: Water sources, technology, and today's challenges", Water Research, Vol. 43, pp. 2317-2348, 2009.
[8] K. P. Lee, T. C. Arnot, and D. Mattia, "A review of reverse osmosis membrane materials for desalination-Development to date and future potential", Journal of Membrane Science, Vol. 370, No.1-2, pp. 1-22, 2011.
[9] I. Cabasso, "Organic liquid mixtures separation by permselective polymer membranes. 1. Selection and characteristics of dense isotropic membranes employed in the pervaporation process", Ind. Eng. Chem. Prod. Res. Dev., Vol. 22, No. 313, 1983.
[10] U. Merten, and P. K. Gantzel, "Method and apparatus for gas separation by diffusion", US Patent 3415038, 1968.
[11] M. J. M. Al-Bahate, K. M. Shabeeb, and B. I. Khalil, "New Synthesis Polyvinyl Chloride- graft- Acrylamide Membrane for Wastewater Treatment", Technologies and Materials for Renewable Energy, Environment and Sustainability, AIP Conf. Proc. 2123, 020016-1–020016-11;, 2019.
[12] M. J. M. Al-Bahate, K. M. Shabeeb, and B. I. Khalil, "Modification and characterization of polyvinyl chloride by graft copolymerization with acrylamide" IOP Conf. Series: Materials Science and Engineering Vol. 518, No. 062014, doi:10.1088/1757-899X/518/6/062014, 2019.
[13] M. H. D. A. Farahani, H. Rabiee, V. Vatanpour, and S. M. Borghei, Desalination and Water Treatment, Vol. 57, pp.11931–11944, 2016.
[14] B. Liu, C. Chen, W. Zhang, J. Crittenden, and Y. Chen, "Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: Effect of additives on properties and performance", Desalination, Vol. 307, pp. 26–33, 2012.
[15] H. Rabiee, V. Vatanpour, M. H. D. A. Farahani, and H. Zarrabi, "Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles", Separation and Purification Technology, Vol. 156, pp. 299–310, 2015.
[16] Z. Maghsouda, M. Pakbaza, M. H. N. Familib, and S. S. Madaenic, "New polyvinyl chloride/thermoplastic polyurethane membranes with potential application in nanofiltration", Journal of Membrane Science, Vol. 541, pp. 271–280, 2017.
[17] D. Ghazanfari, D. Bastani, and S. A. Mousavi, "Preparation and characterization of poly (vinyl chloride) (PVC) based membrane for wastewater treatment", Journal of Water Process Engineering Vol. 16, pp. 98–107, 2017.
[18] M. Pakbaz, and Z. Maghsoud, "Performance evaluation of polyvinylchloride/ polyacrylonitrile ultrafiltration blend membrane", Iran Polym J, Vol.26, No.11, pp.833-849, 2017, DOI 10.1007/s13726-017-0568-3.
[19] A. Behboudia, Y. Jafarzadeha, and R. Yegania, "Preparation and characterization of TiO2 embedded PVC ultrafiltration membranes", chemical engineering research and design, Vol. 114, pp. 96–107, 2016.
[20] A. Akbari, M. Hamadanian, V. Jabbari, A. Y. lehi, and M. Bojaran, "Influence of PVDF concentration on the morphology, surface roughness, crystalline structure, and filtration separation properties of semicrystalline phase inversion polymeric membranes", Desalination and water treatment, Vol. 46, No.1-3, pp. 96–106, 2012.
[21] N. A. Ochoa, P. Prádanos, L. Palacio, C. Pagliero, J. Marchese, A. Hernández, "Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes Characterisation of polyethersulfone UF membranes with dopes containing different PVP", Journal of Membrane Science, Vol. 187, No.1-2, pp. 227–237, 2001.
[22] M. R. Esfahani, J. L. Tyler, H. A. Stretz, and M. J. M. Wells, "Effects of a dual nanofiller, nano-TiO2 and MWCNT, for polysulfone-based nanocomposite membranes for water purification", Desalination, Vol. 372, pp. 47–56, 2015.
[23] W. Zhao, Y. Su, C. Li, Q. Shi, X. Ning, and Z. Jiang, "Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent", J. Membr. Sci., Vol. 318, Vol.1-2, pp. 405-412, 2008.
[24] K. Kimmerle, and H. Strathmann, "Analysis of the structure-determining process of phase inversion membranes", Desalination, Vol. 79, pp. 283–302, 1990.
[25] E. Fontananova, J. C. Jansen, A. Cristiano, E. Curcio, and E. Drioli, "Effect of additives in the casting solution on the formation of PVDF membranes", Desalination, Vol. 192, pp. 190–197, 2006.
[26] Y. Yang, W. Jun, Z. Qing-zhu, C. Xue-si, and Z. Hui-xuan, "The research of rheology and thermodynamics of organic–inorganic hybrid membrane during the membrane formation", J. Membr. Sci., Vol. 311, No.1-2, pp. 200–207, 2008.
[27] M. H. D. A. Farahani, H. Rabiee, V. Vatanpour, and S. M. Borghei, "Fouling reduction of emulsion polyvinylchloride ultrafiltration membranes blended by PEG: the effect of additive concentration and coagulation bath temperature", Desalination and Water Treatment, Vol. 57, No. 26, pp. 11931-11944, 2016.