Ethanol Gas Sensor Fabrication Based on ZnO Flower Like Nanorods
Engineering and Technology Journal,
2020, Volume 38, Issue 3B, Pages 85-97
10.30684/etj.v38i3B.279
Abstract
Zinc oxide flower-like nanorods (ZnO NRs) was successfully synthesized via the hydrothermal method. The growth process was conducted with seed layer concentrations of 20mM. The as-synthesized nanostructures were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), and ultraviolet-visible (UV-VIS) spectrophotometer. The analysis results revealed a pure Wurtzite ZnO hexagonal nanostructures with preferred orientation (002) along the c-direction. The calculated band gap of average crystallite size is 3.2eV and 25 nm respectively. New designed, constructed and successfully calibrated for ethanol gas sensing was found. The ethanol gas sensor was fabricated at room temperature based on the ZnO NRs film. The synthesized materials proved to be a good candidate for the ethanol gas sensor. The optimum results of the gas sensor measurements of the synthesized gas sensor are as follows, the sensitivity, response time, and recovery time at 25 °C are 60%, 80 Seconds and 80 seconds respectively, and at 200 °C are 70%, 60 seconds and 50 seconds respectively.[1] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H.Kind, E.Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, Vol. 292, Issue 5523, pp. 1897-1899, 2001.
[2] J. Zhong, A. H. Kitai, P. Mascher, and W. Puff, “Effect of substrate temperature on the growth and luminescence properties of ZnO nanostructures,” J. Electrochem. Soc. Vol.140, pp.3644- 3649, 1993.
[3] N. Beermann, L. Vayssieres, S.-E. Lindquist, and A.Hagfeldt, “Photoelectrochemical studies of oriented nanorod thin films of Hematite,”J. Electrochem. Soc. Vol.147, pp.2456- 2461, 2000.
[4] N. Yamazoe, “New approaches for improving semiconductor gas sensors, “ Sens. Actuators B: Chem., Vol. 5, pp. 7-19, 1991.
[5] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. Vol.4, pp.455- 459, 2005.
[6] T. Yoshida, K. Terada, D. Schlettwein, T. Oekermann, T. Sugiura, and H. Minoura, “Electrochemical and photoelectrochemical properties of organic semiconductors - dye-sensitization in nanostructured hybrid Materials,” Adv. Mater. Vol.12, pp. 1214- 1217, 2000 .
[7] E. Hosono, S. Fujihara, I. Honma, and H. Zhou, “The fabrication of an upright-standing zinc oxide nanosheet for use in dye-sensitized solar cells,” Adv. Mater. Vol.17, pp.2091- 2094, 2005.
[8] L.E. Greene, M. Law, D.H.Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “ZnO nanowire/p-GaN heterojunction LEDs, ” Nano. Lett. Vol.5, pp.1231- 1236, 2005.
[9] J.B. Baxter, and E.S. Aydil, “Nanowire-based dye-sensitized solar cells,” Appl. Phys. Lett. Vol.86, pp. 053114(1-2), 2005.
[10] S. Narasimmana, L. Balakrishnanb, S.R.Meherb,R. Sivacoumara and Z.C.Alexa, “ZnO Nanoparticles based Fiber Optic Gas Sensor,” AIP Conf. Proc. Vol. 1731, pp. 050052(1-3), 2016.
[11] R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, “Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review,” Nano-Micro Lett. Vol. 7, pp. 97–120, 2015.
[12] H. S. Hassan , A.B. Kashyout , I. Morsi , A.A.A. Nasser , I. Ali., “Synthesis, characterization and fabrication of gas sensor devices using ZnO and ZnO:In nanomaterials,” Beni-Suef University Journal of Basic and Applied Sciences, pp.1-6, 2014.
[13] W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, “Investigation of properties of ZnO nanorod structures by chemical vapor deposition,” Science Vol.295, pp.2425- 2427, 2002.
[14] T. Stubinger, and W. Brutting, “Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells,” J. Appl. Phys. Vol.90, pp.3632- 3641, 2001.
[15] C.J. Brabec, N.S. Sariciftci, and J.C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. Vol.11, pp.15- 26, 2001.
[16] B. Pradhan, A. Bandyopadhyay, and A. J Pal, “Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices,”Appl. Phys.Lett.Vol.88, pp. 093106(1-3), 2006.
[17] M. H. Huang, Y.Wu, H. Feick, N. Tran, E.Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. Vol.13, pp.113- 116, 2001 .
[18] A. D Faisal, “Optimization of CVD parameters for long ZnO NWs grown on ITO/glass substrate,” Bull. Mater. Sci., Vol. 39, No. 7, pp. 1635–1643, 2016 .
[19] X. Liu, X. Wu, H. Cao, and R. P. H. Chang, "Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,"J. Appl. Phys. 95, 3141–3147, 2004 .
[20] Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, and S.Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,”Appl. Phys.Lett. Vol.78, pp.407- 409, 2001.
[21] J.-J. Wu, and S.-C. Liu, “Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100),” Adv. Mater. Vol.14, pp.215-218, 2002.
[22] J.-J. Wu, and S.-C. Liu, “Catalyst-free growth and characterization of ZnO nanorods,” J. Phys. Chem. B Vol.106, pp.9546- 9551, 2002.
[23] J. Zhang, L. Sun, H. Pan, C. Liao, and C. Yan, “ZnO nanowires fabricated by a convenient route,” New J. Chem. Vol.26, pp. 33-34, 2002.
[24] Y. Li, G.W. Meng, L.D. Zhang, and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties” Appl. Phys. Lett. Vol.76, pp. 2011, 2000.
[25] L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, “ZnO nanorod gas sensor for ethanol detection”, Sens. Actuators B: Chem.,Vol. 162, pp. 237– 243, 2012.
[26] D. Zhang, S. Chava, C. Berven, S.K. Lee, and R. Devitt, V. Katkanant, "Experimental study of electrical properties of ZnO nanowire random networks for gas sensing and electronic devices," Appl. Phys. A 100, pp. 145–150, 2010.
[27] C.M. Chang, M.H. Hon, and I.C. Leu, “Preparation of ZnO nanorod arrays with tailored defect-related characteristics and their effect on the ethanol gas sensing performance, ” Sens. Actuators B Vol. 151, pp. 15–20, 2010.
[28] J.Q. Xu, Y.P. Chen, D.Y. Chen, and J.N. Shen, “Hydrothermal synthesis and gas sensing characters of ZnO nanorods, ” Sens. Actuators B Vol. 113, pp. 526–531, 2006.
[29] L. Li, H.Q. Yang, H. Zhao, J. Yu, J.H. Ma, L.J. An, and X.W. Wang, “Hydrothermal synthesis and gas sensing properties of single-crystalline ultralong ZnO nanowires, ” Appl. Phys. A 98, pp. 635–641, 2010.
[30] J. Kim, and K. Yong, “Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing, ” J. Phys. Chem. C 115, pp. 7218–7224, 2011.
[31] Y.Y. Zhang, and J. Mu, “Controllable synthesis of flower- and rod-like ZnO nanostructures by simply tuning the ratio of sodium hydroxide to zinc acetate, ” Nanotechnology Vol. 18, pp. 1-6, 2007.
[32] X.F. Chu, D.L. Jiang, B.D. Aleksandra, and H.L. Yu, “Gas-sensing properties of thick film based on ZnO nano-tetrapods, ” Chem. Phys. Lett. Vol. 401, pp. 426–429, 2005.
[33] R.s B. Kale, Y. –J. Hsu, Y.-F. Lin, and S.-Y. Lu, “Hydrothermal synthesis, characterization and photoluminescence study of single crystalline hexagonal ZnO nanorods with three-dimensional flower-like microstructures, ” Superlatt. Microstr. Vol. 69, pp.239-252, 2014.
[34] A. D. Faisal, “Influence of seed layer on morphology and structure of ZnO nanowires synthesized on silicon via hydrothermal method,” Al-Mustansiriyah J. of Sci., Vol. 27, No 3, pp. 62-67, 2016.
[35] J. Fan, T. Li and H. Heng, “Hydrothermal growth of ZnO nanoflowers and their photocatalyst application, ” Bull. Mater. Sci. Vol.39 No. 1, pp.19-26, 2016.
[36] A. D. Faisal, “Synthesis of ZnO comb-like nanostructures for high sensitivity H2S gas sensor fabrication at room temperature,”Bull. Mater. Sci., Vol. 40, No. 6, Oct. 2017, pp. 1061–1068.
[37] D. Pellegrino, G. Franzò, V. Strano, S. Mirabella and E. Bruno, “Improved synthesis of ZnO nanowalls: effects of chemical bath deposition time and annealing temperature,” Chemosensors, Vol. 7, Issue 18; pp.1-10, 2019 .
[38] E. Darezereshki, M. Ranjbar, and F. Bakhtiari, “One-step synthesis of maghemite (γ-Fe2O3) nanoparticles by a wet chemical method, ” J. Alloys Compounds, Vol. 502, pp.257-260, 2010 .
[39] S. Brintha and M. Ajitha, “Synthesis and characterization of ZnO nanoparticles via aqueous solution, sol-gel and hydrothermal methods, ” IOSR J. Appl. Chem., Vol. 8, Issue 11, pp.66-72,
- Article View: 192
- PDF Download: 127