Document Type : Research Paper

Authors

University of Technology, Department of Materials Engineering, Baghdad, Iraq

Abstract

In this research, the composite material was prepared from untreated and treated corn cob powder by acetylation process and the physical and mechanical properties have been studied. Cellulose is extracted using the Kürchner-Hoffer method and then acetylated. Untreated corn cob powder and Acetylated corn cob powder were mixed with unsaturated polyester resin in different concentrations (0, 1, 2, and 3 wt. %). The Mechanical and the physical test results showed that there is an enhanced in mechanical properties (Tensile, Impact, Hardness, and Bending) with the treatment (Acetylation) by increasing treated corn cob powder mass fraction (1, 2, and 3wt. %) respectively.

Keywords

[1] D. Klemm, B. Heublein, HP Fink, A. Bohnm, “Cellulose: fascinating biopolymer and sustainable raw material,” Prop Polym Sci, Vol.44, No.22, PP.3358-3393, 2005.
[2] K.E. Perepelkin, “Werkstoffe aus Nachwachsenden Rohstoffen,” In: Conference proceedings of the 4th Internationales Symposium, Erfurt, 2003.
[3] A.K. Bledzki, J. Gassan, “Composites reinforced with cellulose based fibres,” Prop Polym Sci, Vol.24, No.2, PP.221-274, 1999.
[4] A.D. French, “Idealized Powder Diffraction Patterns For Cellulose Polymorphs,” Vol.21, PP.885–896, 2014.
[5] K. Gao, Y. Guo, Q. Niu, H. Fang, L. Zhang, Y. Zhang, L. Wang, “Effects of chitin nanofibers on the microstructure and properties of cellulose nanofibers/chitin nanofibers composite aerogels,” Prop Polym Sci, Vol.25, No.8, PP.4591–4602, 2018.
[6] D.A. Osorio, B. Seifried, P. Moquin, K. Grandfield , E.D. Cranston, J. Materm, “Morphology of cross-linked cellulose nanocrystal aerogels: cryo-templating versus pressurized gas expansion processing,” Vol.53, PP.9842–9860, 2018.
[7] R.D. Anandjiwala, S. Blouw, B. Luka, B. Herzegovina, “In: Proceedings of the FAO global workshop: bast fibrous plants for healthy life,” 2004.
[8] E. Bodros, I. Pillin, N. Montrelay, C. Baley, “Could biopolymers reinforced by randomly scattered flax fiber be used in structural applications,” Compos Sci Technology, Vol.67, No.462, PP.470, 2007.
[9] M. Carus, C. Gahle, C. Pendarovski, D. Vogt, S. Ortmann, F. Grotenhermen, T. Breuer, C. Schmidt, “Studie Zur Markt- Und Konkurrenzsituation Bei Naturfasern Und Naturfaserwerkstoffen (Deutschland Und Eu),” Fachagentur Nachwachsende Rohstoffe (FNR), Gu¨lzo, Vol.26, 2008.
[10] H. Geng, “Preparation and characterization of cellulose/N,N′-methylene bisacrylamide/graphene oxide hybrid hydrogels and aerogels,” Carbohydr Polym, Vol.196, PP.289–298, 2008
[11] M. Karus, S. Ortmann, “Marktreife von PP-NF-Spritzguss. Überblick über die PPNF-Spritzguss-Technologie und ihre Eigenschaften. Hürth,” 2005.
[12] H.P.S. Abdul Khalil, A.H. Bhat, A.F. Ireana Yusra, “Green composites from sustainable cellulose nanofibrils: A review,” 2012.
[13] T. Huber, J. Mussig, O. Curnow, Sh. Pang, S. Bickerton, M. Staiger, “A critical review of all-cellulose composites,” 2001.
[14] T. Huber, J. Mussig, “Fibre matrix adhesion of natural fibres cotton, flax and hemp in polymeric matrices analyzed with the single fibre fragmentation test,” Vol.15, PP.335-349, 2008.
[15] Z. Pan, H. Nishihara, S. Iwamura, T. Sekiguchi, A. Sato, A. Isogai, F. Kang, T. Kyotani, Q. Yang, “Cellulose nanofiber as a distinct structure-directing agent for xylem-like microhoneycomb monoliths by unidirectional freeze-drying,” ACS Nano, Vol.10, No.12, PP.10689–10697, 2016.
[16] L. Drzal, MS. Madhukarm, J. Mater, “Fiber-matrix adhesion and its relationship to composite mechanical properties,” PP. 569- 610, 1993.
[17] H. Bos, “The potential of flax fibres as reinforcement for composite materials,” Technische Universita¨t Eindhoven, Eindhoven, 2004.
[18] A. Arbelaiz, B. Fernandez, J.A. Ramos, A. Retegi, R. Llano-Ponte, I. Mondragon, “Mechanical properties of short flax fiber bundle/polypropylene composites: influence of matrix/fiber modification, fiber content, water uptake and recycling,” Compos Sci Technol, Vol.65, No.10, PP.1582-1592, 2005.
[19] J. George, M. Sreekalam, S. Thomas, “A review on interface modification and characterization of natural fibre reinforced plastic composites,” poly Eng Sci,Vol.47, PP.1471-1485, 2001.
[20] P. Gupta, B. Singh, A.K. Agrawal, P.K. Maji, “Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application,” Vol.158, PP.224–236, 2018.
[21] M. Jacob, S. Joseph, L. Pothan, S. Thomas, “A study of advances in characterization of interfaces and fiber surfaces in lignocellulosic fiber-reinforced composites,” Prop Polym Sci, Vol.12, No.2, PP. 95-124, 2005.
[22] X. Tu, R.A. Young, F. Danes, “Improvement of bonding between cellulose and polypro-pylene by plasma treatment,” Vol.1, PP.87-106, 1994.
[23] T. Huber, U. Biedermann, J. Mussig, “Enhancing the fibre matrix adhesion of natural fibre reinforced polypropylene by electron radiation analyzed with the single fibre fragmentation test,” Prop Polym Sci,Vol.17, No.4, PP. 371, 2010.
[24] N. Yousefi, K.K.W. Wong, Z. Hosseinidoust, H.S. Sorensen, S. Bruns, Y. Zheng, N. Tufenkji, “Hierarchically porous, ultra-strong reduced graphene oxide-cellulose nanocrystal sponges for exceptional adsorption of water contaminants,” Prop Polym Sci ,Vol.10, PP.7171–7184, 2018.