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 This work presents a driving control for the trajectory tracking of four 
mecanum wheeled mobile robot (FMWMR). The control consists of 
Backstepping-Type 1 Fuzzy Logic-Particle swarm optimization i.e.,(BSC-
T1FLC-PSO). The kinematic and dynamic models have been derived. 
Backstepping controller (BSC) is used for finding controlled torques that 
generated from robot motors while Type-1 fuzzy logic control (T1FLC) as 
well as particle swarm optimization (PSO) used for finding the 
appropriate values of gain parameters of BSC. Square trajectory has been 
selected to test the performance of the control system of FMWMR. 
MATLAB/ Simulink is used to simulate the results. It has been concluded 
from the results that obtained from this control system there is a good 
matching between the simulated and the desired trajectories. 
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1. INTRODUCTION 
The most invitingly type of mobile robots are the wheeled mobile robot (WMR) due to their 

capability for fast maneuver and effective control approaches [1]. WMR can be used in a lot of 
applications which are very important in our life such us in transportations, health and in industry [2]. 
In spite of benefit properties of WMR that are maintained above but there is weakness specially when 
the robot is moving in a narrow space. So that, WMR with Mecanum wheels can overcome this 
drawback due to their lateral movement ability as well as higher maneuver [3]. There are some 
studies that are concerned with approaches that are used for control and tracking of WMR. In [4], 
backstepping controller was used for the trajectory tracking of FMWMR. The backstepping gain 
parameters had been chosen by trial and error. In [5], a nonlinear PID controller used for the tracking 
of non-holonomic WMR. In [6], the authors studied the inverse kinematics of FMWMR with stepper 
motors. In [7], Fractional order PID controller based on modified PSO was adopted as a control 
system for tracking of non-holonomic WMR while in [8], BSC was used as a controller action of 
FMWMR. LQR controller was Implemented for the tracking of FMWMR, and its results compared 

mailto:20071@uotechnology.edu.iq
https://doi.org/10.30684/etj.v39i5A.1926
http://creativecommons.org/licenses/by/4.0


Engineering and Technology Journal                   Vol. 39, Part A (2021), No. 05, Pages 779-789 
 

780 

with PI controller [9]. Model predictive controller had been selected as a controller system for 
omnidirectional WMR [10]. Two controllers had been adopted for FMWMR tracking which are PID 
and LQR controllers [11].  

In this paper, hybrid controller design consist of BSC-T1FLC-PSO have been used for the 
tracking of FMWMR. MATLAB programing is selected for programing the equations and to present 
the results. The results show that there is a good matching between the desired and simulation 
tracking. 

2. MODELING OF MOBILE ROBOT 
In this section, the kinematics as well as the dynamic models of FMWMR are derived. First, the 

kinematic model has been derived. Kinematic model of WMR describes the mapping between the 
robot velocities with wheels’ angular velocities. The WMR with Mecanum wheels is a holonomic 
robot due to its ability to move in the lateral direction and this feature is very important especially 
when the robot moves in narrow spacing or in the case of the obstacle’s avoidance. The FMWMR 
consist of platform as well as four Mecanum wheels. Each of this wheel contains a set of passive 
rollers which are in 45° about the hub of the robot. The robot parameters can be defined as: 

Points (A) and (D) represent the centroid of the robot and the wheel center, respectively.  (ξi):- 
The angle between the wheel axis and the vector (DA). (δi) is the measured angle between (Ai) and 
XR. (Ωi) is the angle between the roller rotation axis and wheel plane. (ri) is the wheel (i) radius  and 
(Ωı)ıs  ̇  the rotational speed of each wheel and these parameters are illustrated in Figure 1 as shown 
below. 

 
 

 

 

 

 

 

 

 

 

Figure 1: Parameters of Mecanum wheel [1]. 

In the derivation of kinematic model, pure rolling condition i.e., (without slipping) is considered. The 
velocity of (Ai) is equal to (
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Ψir i) while its value along the roller axis equal to (
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the local frame {R}, the robot translation velocities are [
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Ry ] and ( �̇�𝜃)   can be defined as the robot 
rotational speed about (ZR). The velocity of  
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Where i=1,2,3,4 as well as (𝑃𝑃0̇) and (𝑅𝑅𝑅𝑅0
(𝜃𝜃)) are the velocity vector of the robot in terms of global 

coordinate and the rotation matrix, respectively. The robot velocity vector in terms of global {O) and 
local {R} frames can be expressed as below: 
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The relation between the global and local velocity vector can be described as: 

                                                                                                                        (4)   

   The representation of rotation matrix is: 
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The configuration of FMWMR can be seen in Figure 2 as below: 

 
Figure 2: FMWMR Configuration. 

The radius of each wheel is equal so that (ri=r) and the inverse kinematics equation can be written as: 
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Where:  

 

The magnitude of (δ) can be evaluated as δ=tan−1 �ℎ1
ℎ2

� . Forward kinematic equation can be expressed 
as: 
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Where H+= (HTH)-1 HT   and the matrix [H] has been represented as: 

          )(
••

•= OO
R PRP R θ

,142211211 ==== aaaa ,141323122 −==== aaaa ,141323122 −==== aaaa )
4

(sin244342414 δπ
−==== laaaa



Engineering and Technology Journal                   Vol. 39, Part A (2021), No. 05, Pages 779-789 
 

782 

 
















−•



















=
100
0cossin
0sincos

434241
333231
232221
131211

θθ
θθ

aaa
aaa
aaa
aaa

H
                                                                              (7) 

Secondly, the dynamic model has been derived by applying Lagrange equation. It is considered 
that the robot centroid point (D) not coincide with robot center of gravity point (D/). With respect to 
frame {R}, the velocities of points (D) and (D/) can be expressed as: 
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The parameters (d1) and (d2) represent the distance between point (D) and (D/). Lagrangian (L) is 
determined as:  

L=T-U                                                                                                                                         (9)  

(U) is the potential energy and its magnitude is zero due to the plane movement of the robot and 
for this reason (L=T). (T) is the kinetic energy and the mathematical model that used for representing 
it0 can be written as: 
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Where mb: platform mass,  Ib: platform moment of inertia,  mw: wheel mass, and Iw: wheel 
moment of inertia. 

Each wheel has the same moment of inertia and that leads to Iw1= Iw2= Iw3= Iw4=Iw. The 
representation of Lagrange equation is: 
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Fi and 
•

q  that are maintained in equation (11) represented the generalized forces and generalized 
coordinates respectively and they described as: 𝑞𝑞 = [𝑞𝑞1     𝑞𝑞2    𝑞𝑞3]𝑇𝑇 = [𝑥𝑥  𝑦𝑦  𝜃𝜃]𝑇𝑇 

The evaluation of generalized (Force/ Torque) can be expressed as: 
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Where (τfi) is frictional torque and (τi) is the torque of wheel (i). The equations of calculation the 
frictional forces and torques can be written as: 
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Where (µ) can be defined as coefficient of friction and (g) is the gravitational acceleration. The 
formula that described the motion of the robot is: 

 τTT B
r

fSBqqqCqqM 1),()( =++
••••                                                                                         (15) 

Where: - [M] is the matrix of inertia, [C] is the matrix of centripetal and Coriolis, [B] is the input 
transformation matrix, [S] is the matrix that indicate the direction of friction and [f] is representing 
the frictional effect. The elements of each matrix can be shown as below: 
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Where: 
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3. FOUR MECANUM WHEELED MOBILE ROBOT CONTROL  
In this work, a hybrid controller consist of BSC-T1FLC-PSO has been used for trajectory 

tracking of FMWMR. Backstepping controller used for computing the controlled torques that are 
generated from WMR motors while T1FLC and PSO are applied for evaluating the proper gains 
values of BSC and that be described as below: 

I. Backstepping Controller (BSC):  
BSC is applied on equation (15) and that can be shown as below: 
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Where qd(t) is defined as robot desired tracking.  The differentiation of equation (17) is written as: 
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To check the stability of the nonlinear control system, Lyapunov function is used and it's 
expressed in the vector form as: 

                                                                                                                                                (19)                  
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For making Eq (21) stable, (u1) must replace by (
•

dq -e1) and that leading to: 
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From the above equation, it can see that the system is asymptotically stable. The equation that 
represents the velocity n be written as:  
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 The time derivative of equation (22) is: 
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It is necessary to check the stability of the system and there for Lyapunov function has been used 
as below: 
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 The derivate of equation (25) is: 
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The equation of the controlled torque is represented as below: 
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 Now, substitute (27) in (26) and it can obtain: 
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From (28), it can see that the system is asymptotically stable. 
The parameters of BSC gains (K1 and K2) are evaluating by T1FLC and PSO and the detail of the 

evaluating is described in the next sections.  

II. Type-1 Fuzzy Logic Control (T1FLC): 
In this work, T1FLC has been implemented to compute the controller gains parameters of BSC 

which is    𝐾𝐾1 ∈ 𝑅𝑅3×3      i.e.,( K1,K2,K3). T1FLC is a computing framework and it relies on fuzzy 
sets, if then fuzzy rules as well as fuzzy reasoning. In this work, Mamdani membership function 
(MFs) is selected as inference unit of fuzzy logic control (FLC) [12]. The input variables to FLC are 
(L) and (α) where (L) can be defined as the distance from the desired to actual WMR position and (α) 
is the deviation angle between the desired and actual WMR and that illustrated as in Figure 3. 
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Figure 3: FMWMR with (α) and (L) parameters 

The equations that used for evaluating (L) and (α) are represented as: 
)/(tan 1

xy ee−=α                                                                                                           (29) 

 
22 )()( yx eeL +=                                                                                                            (30)                                                                                                 

The variable (α) has five triangle MFs which are positive big (PB), ), positive small (PS), zero(Z), 
negative small (NS) and negative big (NB). While variable (L) has four MFs which are Zero(Z), 
small (S), Medium(M) and big(B). The output from the FLC are the three gains parameters of BSC 
i.e., (K1, K2, K3) and their MFs are: big(B), medium(M) and  small(S). The representation of the 
above MFs for the inputs and outputs parameters in MATLAB programing can be seen in Figures 4 
and 5. 

 

 
 
 
 
 
 

Figure 4: MFs (a) for parameter (L) and (b) for parameter (α) 

 
Figure 5: MFs for each gain parameter 

It can be summarized the fuzzy rules that relating between the inputs and output variables in 
Tables I, II, and III. 

TABLE I: Fuzzy Rules of gain (K1). 

 NB NS Z PS PB 
Z S S S S S 

S M M S M M 

M B M M M B 

B B B B B B 

 
 

)(a )(b

L α



Engineering and Technology Journal                   Vol. 39, Part A (2021), No. 05, Pages 779-789 
 

786 

TABLE II: Fuzzy Rules of gain (K2). 

 NB NS Z PS PB 
Z M M S M M 
S S S S S S 
M M M S M M 
B B B B B B 

  

TABLE III: Fuzzy Rules of gain (K3). 

  NB NS Z PS PB 
Z B M S M B 

S B M S M B 

M B M S M B 

B B M S M B 

 
The defuzzification formula that has been used in this work is the centroid of area (COA) and its 

mathematical equation is: 

∫

∫
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z
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zdz
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µ                                                                                                       (31) 

Now, the parameters (K1, K2, K3) are evaluate from T1FLC but their values are in normalized 
mode i.e., (their magnitudes are between [0-1]) and so that, the output from FLC has been de-
normalizing and for this reason PSO has been adopted for de-normalizing the output from FLC as 
well as computing the another set of BSC gains i.e., (K4, K5, K6) and that has been described in the 
next section. 

III. Particle Swarm Optimization (PSO) 
 PSO can be defined as a stochastic optimization that has been used for solving the problems. 

PSO is impelled by the intelligent behavior of animals such as flocks of birds. It is fast as well as 
simple algorithm. Each individual in the swarm is called particle. Particles can update their velocities 
and positions with respect to the change of the environment and trying to reach the optimum or best 
solution. The mathematical model that used for updating the velocity as well as the position is [13]: 

)()(* ,,2,,11,. titititiiti xgbestrandcxpbestrandcvwv −∗∗+−∗∗+=+                               (32) 

1,,1, ++ += tititi vxx
                                                                                                                       (33) 

Where ( 1, +tiv ) is represent the speed of particle ith in iteration (t+1), )( 1, +tix  is defined as the location 
of the particle ith in iteration (t+1), (w) is inertia weight factor, c1 and c2 are the acceleration and 
learning coefficients respectively, (rand) is a random value between [0-1], (pbest) represents the best 
position of each particle and (gbest) defined as   the global best position of the swarm. The 
parameters that are relating to PSO can be illustrated in Table IV. 

TABLE IV: Parameters of PSO 

Parameters Value 
No. of particles 10 
No. of variables 6 
No. of iterations 50 

C1=C2 2 
Objective Function 222

θeee yx ++  

L α

L α
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Weight (w) 0.98 

In this work, the main purpose of using PSO is to find the optimum de-normalizing values of 
gains parameters (K1, K2, K3) that are computed from T1FLC as well as computing the second set of 
BSC gains parameters which are (K4,K5,K6). The values of the gains (K1,…, K6) are within range (0-
150). 

4. RESULTS AND DISCUSSIONS 
The adopted controller has been tested with square trajectory by using MATLAB programing. 

The dimension of the square path is equal to (2.25 meter) and the robot moving with constant desired 
velocity equal to (0.1 m/s). The parameters of FMWMR are taken from [14]: 
M=3.1 kg, Mw=0.35 kg, Ib=0.032 kg m2, Iw=6.24*10-4 kg m2, r=0.05 m, h1=h2=0.15 m, µ=0.02, 
d1=d2=0.02 m and l=0.25. The magnitude of gain (K1) that including (k1, k2, k3) that computed from 
T1FLC based on PSO are:  
 

K1=�
112.2149 0 0

0 73.5671 0
0 0 44.2837

�  while the magnitude of (K2) which including (k4, k5, k6) that 

are computed from PSO are 
 

 K2=�
54.3361 0 0

0 40.3458 0
0 0 18.1154

�  

The robot started its movement from the initial position q= [0, 0, 0]T  and the results of the adopted 
controller can be showed as below: 
 
 
 
 
 
 
 
 
 
 

Figure 6: Square Trajectory Tracking 

From Figure 6 explains the performance of the trajectory tracking of the robot. It can see that 
there is a good matching between the actual and desired tracking and that indicate the proposed 
controller has effective performance. The behavior of the errors in (x and y) coordinates can be seen 
in Figure 7. 

 

(a)                                                                                  (b) 
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Figure 7:  (a) Error in x- coordinate, (b) Error in y- coordinate 

The maximum value of the error in (x) coordinate is equal to (-0.0377 m) at the beginning of the 
simulation and after about seven seconds the magnitude of the error is approximately converging to 
zero while the maximum value of the error in the (y) coordinate (0.01389 m) and after four seconds 
the error is converging to zero. The values of the mean square error (MSE) for each state error 
component can be seen in Table V. 

TABLE V: mean square error. 

Mean Square Error Value (m) 
x- direction 2.3787*10-4 

y-direction 1.4435*910-4 

 
The magnitudes of the torques that generated from the robot motors can illustrated in Figure 8. 

  

(a)                                                                                 (b) 
 

   
(c)                                                                                      
(d) 

Figure 8: The magnitudes of the torques. 

It can b seen from Figure 8 (a), (b), (c) and (d) that the magnitudes of the torques is between (0.8) 
to (-0.8) N.m. The linear and angular velocity of the robot is shown in Figure 9. 

 

                                                  (a)                                               (b) 
Figure 9:  (a) Linear velocity of robot (m/sec), (b) Angular velocity (rad/sec) 

From the results that are shown in Figures 7, 8 and 9, it is concluded that the magnitudes of the 
errors are small in the beginning of the simulation and it is converge to zero after small period of 
time and the magnitudes of the torques and velocities of the robot are smooth and acceptable, and all 
these results indicate the robust and effective of the proposed controller. 
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5. CONCLUSIONS 
In this work, a hybrid controller consisting of BSC-T1FLC-PSO controller for trajectory tracking 

of FMWMR has been presented. BSC controller is used for computing the controlled torques while 
T1FLC as well as PSO are adopted for evaluating the optimum values of BSC gains parameters. The 
dynamic model of FMWMR has been derived by using Lagrange method. It has been proved the 
stability of the hybrid controller by using Lyapunov theory. MATLAB programing is used for 
simulating the results of the proposed controller for the case of the square tracking. The magnitudes 
of the MSE for (x and y) coordinates are (2.3787*10-4) m and (1.4435*910-4) m respectively and 
these values of the error are small, and the magnitudes of the error are converging to zero after about 
five seconds. The magnitudes of the torques as well as the robot linear and angular velocities are 
presented, and they are smooth and acceptable. Also, the performance of the trajectory tracking is 
presented and there is a good matching between the desired and actual tracking and that indicates the 
BSC-T1FLC-PSO controller is effective and its able to track the FMWMR for any path. For future 
work, it is good for making a comparison with another hybrid controller such as BSC-T1FLC. 
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