Document Type : Research Paper


1 Department of Applied Sciences, University of Technology, Baghdad, Iraq

2 Department of Applied Sciences, University of Technology - Iraq


In this work, titanium dioxide films were deposited on fluorine tin oxide (FTO)-glass substrates using Hydrothermal method. A low-cost homemade autoclave was used to fabricate pure TiO2 and Fe-doped (0.1%, 0.3%, 0.5%, 0.7% and 1.5%) films. X-ray diffraction patterns showed that the predominant phase is rutile (R-TiO2) with peaks at (101), (002) and (112). The Field Emission Scanning Electron Microscope (FESEM) top and cross-sectional images indicated that the films have vertically aligned nanorods structures with parallelogram cross-sectional areas and aspect ratio range (9.2-15.3).


[1] B. Hu, Q. Tang, B. He, L. Lin and H. Chen, “Mesoporous TiO2 anodes for efficient dye-sensitized solar cells: An efficiency of 9.86% under one sun illumination,” Journal of Power Sources, vol. 267, pp.445-451, 2014.
[2] T. Ohno, T. Mitsui, and M. Matsumura, “Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light,” Journal of Chemistry Letters, vol. 32, no.4, pp.364-365, 2003.
[3] J. Szlufcik, J. Majewski, A. Buczkowski, J. Radojewski, L. Jȩdral, and E. B. Radojewska, “Screen-printed titanium dioxide anti-reflection coating for silicon solar cells,” Solar Energy Materials, vol.18, no.5, pp.241–252, 1989.
[4] B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani, and E.-K. Suh, “TiO2 thin film gas sensor for monitoring ammonia,” Materials Characterization, vol. 58, no.8-9, pp.680–684, 2007.
[5] J. M. Wu, H. C. Shih, and W. T. Wu, “Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation,” Nanotechnology, vol.17, no.1, pp.105–109, 2005.
[6] A. H. Mayabadi, V. S. Waman, M. M. Kamble, S. S. Ghosh, B. B. Gabhale, S. R. Rondiya, and A. V. Rokade, “Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room
temperature by chemical bath deposition method,” Journal of Physics and Chemistry of Solids, vol.75, no.2, pp.182-187, 2014.
[7] R. Ayouchi, C. Casteleiro, R. Schwarz, J. R. Barrado, and F. Martín, “Optical properties of TiO2 thin films prepared by chemical spray pyrolysis from aqueous solutions,” Physica Status Solidi C, vol.7, no.3–4, pp.933–936, 2010.
[8] Q. Chen, Y. Qian, Z. Chen, Y. Jia, G. Zhou, X. Li and Y. Zhang, “Low-temperature deposition of ultrafine rutile TiO2 thin films by the hydrothermal method,” Physica Status Solidi A, vol.156, no.2, pp.381–385, 1996.
[9] X. Yang , C. Cao, L. Erickson, K. Hohn, R. Maghirang and K. Klabunde, “Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation,” Applied Catalysis B: Environmental, vol. 91, no.3-4, pp.657–662, 2009.
[10] R. S. Dubey, and S. Singh, “Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method,” Results in Physics, vol. 7, pp.1283–1288, 2017.
[11] R. Dholam, M. N. Patel, Adami, and A. Miotello, “Hydrogen production by photocatalytic water-splitting using Cr-or Fe-doped TiO2 composite thin films photocatalyst,” International Journal of Hydrogen Energy, vol.34, no.13, pp.5337-5346, 2009.
[12] T. Touam, L. Znaidi, D. Vrel, I. Ninova-Kuznetsova, O. Brinza, A. Fischer and A. Boudrioua, “Low Loss Sol-Gel TiO2 Thin Films for Waveguiding Applications,” Coatings, vol.3, no.1, pp.49-58, 2013.
[13] M. Kitano, R. Mitsui, D. R. Eddy, Z. M. A. El-Bahy, M. Matsuoka, M. Ueshima, and M. Anpo, “Synthesis of Nanowire TiO2 Thin Films by Hydrothermal Treatment and their Photoelectrochemical Properties,” Catalysis letters, vol.119, no. 3-4, pp.217–221, 2007.
[14] L. Wan, Y. Gaoa, X. H. Xia, Q. R. Deng and G. Shao, “Phase selection and visible light photo-catalytic activity of Fe-doped TiO2 prepared by the hydrothermal method,” Materials Research Bulletin, vol.46, no.3, pp. 442–446, 2011.
[15] Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei and J. Jiao, “A self-powered UV photodetector based on TiO2 nanorod arrays,” Nanoscale Research Letters, vol.8, no.1, pp. 188, 2013. [16] T. Theivasanthi and M. Alagar. "Titanium dioxide (TiO2) nanoparticles XRD analyses: an insight," arXiv preprint arXiv, vol. 1307, pp.1091, 2013.
[17] S. Manu and M. Abdul Khader, “Non-uniform distribution of dopant iron ions in TiO2 nanocrystals probed by X-ray diffraction, Raman scattering, photoluminescence and photo catalysis.” Journal of Materials Chemistry C, vol.3, no.8, pp.1846 –1853, 2015.
[18] B. Liu and E. S. Aydil, “Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells,” Journal of the American Chemical Society, vol.131, no.11, pp. 3985–3990, 2009.