Document Type : Research Paper


1 Electrical Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 Ministry of Science and Technology, Space and Telecommunications Directorate, Baghdad, Iraq.


A huge traffic flow in the next generation network is anticipated due to the rising in number of users and the new services that need low end-to-end latency causing a large signaling load on the Core Network (CN). In order to mitigate this issue, many revolutionary architectures have been proposed to reduce this burden such as Cloud Radio Access Network (C-RAN). In this paper, a new C-RAN distributed core network architecture has been proposed by splitting some CN functions and grouping them into one location with Base Band Units (BBUs). As a measure of testing the proposed architectures and by using the MATLAB, the number of signaling messages processed by the control entities was analyzed. The evaluation results indicate a significant improvement if it have been compared to Long Term Evolution (LTE) architecture in terms of signaling load reduction, As the average signaling load was reduced by 46.04 percent in one of the proposed architectures when the number of user equipments increased.


  • The number of messages has been reduced in the proposed architecture as compared with the previous related works.
  • The signaling load in the Long Term Evolution was reduced by 45.4%  when taking into consideration the area size.
  • The signaling load in the Long Term Evolution  was reduced by 38.3% when analyzing the User Equipment  velocity.
  • The signaling load in the Long Term Evolution was reduced by 46.04% when taking into consideration the User Equipment number.


[1] D.  Wu,  H.  Shi,  H.  Wang,  R.  Wang,  and  H.  Fang,  A  feature-based learning  system  for  internet  of  things  applications, IEEE Internet of Things Journal, 6 (2018) 1928–1937.
[2] Z. Zhang and L. Wang, Social tie-driven content priority scheme for d2d communications, Information Sciences, 480 (2019), 160–173.
[3] P. Zhang, X. Kang, Y. Liu, and H. Yang, Cooperative willingness aware collaborative  caching  mechanism  towards  cellular  d2d  communication, IEEE Access, 6 (2018) 046–67056.
[4] D. Wu, Q. Liu, H. Wang, Q. Yang, and R. Wang, Cache less for more: Exploiting  cooperative  video  caching  and  delivery  in  d2d  communications, IEEE Transactions on Multimedia, 21 (2018)1788–1798.
[5] S.  S.  Jaffer,  A.  Hussain,  M.  A.  Qureshi,  and  W.  S.  Khawaja,  Towards the shifting of 5g front haul traffic on passive optical network,Wireless Personal Communications, 112 (2020), 1549–1568.
[6] A. Virdis, G. Stea, D. Sabella, and M. Caretti, A practical framework for energy-efficient  node  activation  in  heterogeneous  lte  networks, Mobile Information Systems, (2017).
[7] J.  Gozalvez,  Tentative  3gpp  timeline  for  5g  [mobile  radio], IEEE Vehicular Technology Magazine, 10 (2015) 12–18.
[8] S.  Sicari,  A.  Rizzardi,  and  A.  Coen-Porisini,  5g  in  the  internet  of things  era:  An  overview  on  security  and  privacy  challenges, Computer Networks, 179 (2020) 107345.
[9] T.-Y. Wu, Z. Lee, M. S. Obaidat, S. Kumari, S. Kumar, and C.-M. Chen, An authenticated key exchange protocol for multi-server architecture in 5g networks, IEEE Access, 8 (2020) 096–28 108.
[10] J. H. Kim, 6g and internet of things: a survey, Journal of Management Analytics, (2021) 1–17.
[11] P.  Varga,  J.  Peto,  A.  Franko,  D.  Balla,  D.  Haja,  F.  Janky,  G.  Soos,D.  Ficzere,  M.  Maliosz,  and  L.  Toka,  5g  support  for  industrial  iotapplications–challenges,  solutions,  and  research  gaps,Sensors,  20 (2020) 828.
[12] D.  Chandramouli,  R.  Liebhart,  and  J.  Pirskanen, 5G for the Connected World. John Wiley & Sons, (2019).
[13] J. P. Shim, M. Avital, A. R. Dennis, M. Rossi, C. Sørensen, and A. French, The transformative  effect  of  the  internet  of  things  on  business  and society, Communications of the Association for Information Systems, 44 (2019) 5.
[14] M. Presser, Q. Zhang, A. Bechmann, and M. J. Beliatis, The internet of things as driver for digital business model innovation, in Digital Business Models. Springer, (2019) 27–55.
[15] H. E. Yılmaz, A. Sirel, and M. F. Esen, The impact of internet of things self-security on daily business and business continuity, in Handbook of research on cloud computing and big data applications in IoT.IGI Global, (2019) 481–498.
[16] A. Raschendorfer, B. M ̈orzinger, E. Steinberger, P. Pelzmann, R. Oswald, M. Stadler, and F. Bleicher, On iota as a potential enabler for an m2m economy in manufacturing, Procedia CIRP, 79 (2019) 379–384.
[17] K. David and H. Berndt, 6g vision and requirements: Is there any need for  beyond  5g? IEEE Vehicular Technology Magazine,  13 (2018) 72–80.
[18] F.  Tariq,  M.  R.  Khandaker,  K.-K.  Wong,  M.  A.  Imran,  M.  Bennis,  and M. Debbah, A speculative study on 6g,IEEE Wireless Communications, 27 (2020) 118–125.
[19] G.  E.  Gonc ̧alves,  G.  L.  Santos,  L.  Ferreira, ́E.  d.  S.  Rocha,  L.  M. de Souza, A. L. Moreira, J. Kelner, and D. Sadok, Flying to the clouds: The  evolution  of  the  5g  radio  access  networks, in The Cloud-to-Thing Continuum.    Palgrave Macmillan, Cham, (2020) 41–60.
[20] M. Series, Minimum requirements related to technical performance for imt-2020 radio interface (s), Report (2017) 2410-0.
[21] A.  R.  Bahai,  B.  R.  Saltzberg,  and  M.  Ergen, Multi-carrier digital communications: theory and applications of OFDM. Springer  Science & Business Media, 2004.
[22] D. Wu,  Z. Zhang, S.  Wu, J. Yang,  and R. Wang,  Biologically inspired resource  allocation  for  network  slices  in  5g-enabled  internet  of  things, IEEE Internet of Things Journal, 6, (2018) 9266–9279.
[23] Y.  Cai,  F.  R.  Yu,  and  S.  Bu,  Dynamic  operations  of  cloud  radio access  networks  (c-ran)  for  mobile  cloud  computing  systems, IEEE Transactions on Vehicular Technology, 65 (2015) 1536–1548.
[24] M.  Peng,  Y.  Sun,  X.  Li,  Z.  Mao,  and  C.  Wang,  Recent  advances  in cloud  radio  access  networks:  System  architectures,  key  techniques,  and open issues, IEEE Communications Surveys & Tutorials, 18 (2016) 2282–2308.
[25] N.  Gupta,  S.  Sharma,  P.  K.  Juneja,  and  U.  Garg,  Sdnfv  5g-iot:  A framework for the next generation 5g enabled iot,in 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM).    IEEE, (2020) 289–294.
[26] R. Shah, V. Kumar, M. Vutukuru, and P. Kulkarni, Turboepc: Leveraging dataplane  programmability  to  accelerate  the  mobile  packet  core,  in Proceedings of the Symposium on SDN Research, (2020) 83–95.
[27] J. Cho, R. Stutsman, and J. Van der Merwe, Mobilestream: a scalable, programmable and evolvable mobile core control plane platform, in Proceedings of the 14th International Conference on emerging Networking EXperiments and Technologies, (2018) 293–306.
[28] Z. A. Qazi, M. Walls, A. Panda, V. Sekar, S. Ratnasamy, and S. Shenker, A high performance packet core for next generation cellular networks, in Proceedings of the Conference of the ACM Special Interest Group on Data Communication, (2017) 348–361.
[29] T. Sasidhar, V. Havisha, S. Koushik, M. Deep, VK. Reddy, Load Balancing Techniques for Efficient Traffic Management in Cloud Environment, International Journal of Electrical and Computer Engineering (IJECE), 6 (2016) 963-973.
[30] S. Potluri and K. Subba Rao, Quality of Service based Task Scheduling Algorithms in Cloud Computing, International Journal of Electrical and Computer Engineering (IJECE), 7 (2017) 1088.
[31] X. An, F. Pianese, I. Widjaja, and U. G. Acer, Dmme: A distributed lte mobility management entity, Bell Labs Technical Journal, 17 (2012) 97–120.
[32] M. Pozza, Solving signaling storms in lte networks: A software-defined cellular architecture, (2016).
[33] S.  B.  H.  Said,  M.  R.  Sama,  K.  Guillouard,  L.  Suciu,  G.  Simon,  X.  Lagrange, and J.-M. Bonnin, New control plane in 3gpp lte/epc architecture for  on-demand  connectivity  service,  in 2013 IEEE 2nd international conference on cloud networking (CloudNet).    IEEE, (2013) 205–209.
[34] M.  R.  Sama,  S.  B.  H.  Said,  K.  Guillouard,  and  L.  Suciu,  Enabling network programmability in lte/epc architecture using openflow, in 2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). IEEE, (2014) 389–396.
[35] V.-G. Nguyen and Y. Kim, Proposal and evaluation of sdn-based mobile packet  core  networks, EURASIP Journal on Wireless Communications and Networking, 2015 (2015) 172.
[36] I.  Al-Samman,  A.  Doufexi,  and  M.  Beach,  A  c-ran  architecture  for  lte control signalling, in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring).    IEEE, (2016) 1–5.
[37] I. Al-Samman, A. Doufexi, and M. Beach, A proposal for hybrid sdn c-ran architectures for enhancing control signaling under mobility, in 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall).IEEE,  (2016) 1–6.
[38] Widjaja,  P.  Bosch,  and  H.  La  Roche,  Comparison  of  mme  signaling loads for long-term-evolution architectures, in 2009 IEEE 70th Vehicular Technology Conference Fall. IEEE, (2009).