Document Type : Research Paper


Materials Engineering Dept., University of Technology-Iraq, Alsina’a street,10066 Baghdad, Iraq.


NiTi alloys are widely used in biomedical applications for their unique properties particularly the shape memory effect, superelasticity, and biocompatibility. In this research, NiTi/PVA composite nanofibers are fabricated by electrospinning technique, using a novel method of producing NiTi ultrafine particles by immersing amorphous NiTi alloy in dilute aqua regia solution. The NiTi particles are successfully embedded in the PVA matrix. The produced NiTi particles are analyzed by X-ray diffraction (XRD), Energy dispersive spectroscopy (EDS), and Particle size analyzer. The XRD pattern of ultrafine NiTi particles shows much better phases as compared to the XRD pattern of the amorphous NiTi alloy sample. The morphology of the produced NiTi/PVA composite nanofibers are characterized by Field emission scanning microscope (FESEM), and Energy dispersive spectrometry (EDS). The test results show regular continuous smooth bead-free nanofibers.


  • Preparation of ultrafine NiTi particles by immersing sintered alloy in aqua regia.
  • Preparation of composite biomedical NiTi /PVA nanofibers.
  • Preparation of Nitinol nanofibers with polyvinyl alcohol.


[1] S. Zhang, Z. Jia, T. Liu, and G. Wei, Electrospinning nanoparticles-based materials, Sensors, 19, 18, (2019), 3977–4001.
[2] S. Hasan, A review on nanoparticles : their synthesis and types,Res. J. Recent Sci., 4,  February, (2014),9–11.
[3] E. O. Nasakina, M. A. Sevostyanov, A. S. Baikin, A. V. Seryogin, S. V. Konushkin, K. V. Sergienko, A. V. Leonov and A. G. Kolmakov, Applications of nanostructural NiTi alloys for medical devices, Shape Mem. Alloy. - Fundam. Appl., (2017), doi: 10.5772/intechopen.69238.
[4] P. Majeric, R. Rudolf, I. Anzel, B. Friedrich, J. Bogovic, and S. Stopic, Nanoparticles prepared from NiTi orthodontic wire, Livar. Vestn.,  62, 3, (2015), 142–151.
[5] M. Speirs, X. Wang, S.V. Baelen, A. Ahadi, S. Dadbakhsh, J.-P. Kruth, J. V. Humbeeck, On the transformation behavior of NiTi shape-memory alloy produced by SLM, Shape Mem. Superelasticity,  2, 4, (2016),310–316.  doi: 10.1007/s40830-016-0083-y.
[6] D. Mutter and P. Nielaba, Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles: Simulation of phase transitions in NiTi nanoparticles, Eur. Phys. J. B, 84, 1, (2011),109–113 . doi: 10.1140/epjb/e2011-20661-4.
[7] S. Barcikowski, M. Hustedt, and B. Chichkov, Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvents and monomers,Polimery/Polymers, 53, 9, (2008),657–662. doi: 10.14314/polimery.2008.657.
[8] D. D. Radev, Mechanical synthesis of nanostructured titanium–nickel alloys, Adv. Powder Technol., 21, 4, (2010),477–482. doi: 10.1016/J.APT.2010.01.010.
[9] M. Kurumada, Y. Kimura, H. Suzuki, O. Kido, Y. Saito, and C. Kaito, TEM study of early Ni4Ti3 precipitation and R-phase in Ni-rich NiTi nanoparticles, Scr. Mater., 50, 11, (2004),1413–1416. doi: 10.1016/j.scriptamat.2004.02.029.
[10] C. Shearwood, Y. Q. Fu, L. Yu, and K. A. Khor, Spark plasma sintering of TiNi nano-powder, Scr. Mater., 52, 6, (2005),455–460.doi: 10.1016/J.SCRIPTAMAT.2004.11.010.
[11] W. Crone, W. Drugan, A. Ellis, and J. Perepezko, Final technical report: nanostructured shape memory aLloys, University of Wisconsin-Madison, Madison, WI, (2005).
[12] S. Yatsu,  H. Takahashf, H. Sasaki, N. Sakaguchi, K. Ohkubo, T. Muramoto and S. Watanabe, Fabrication of nanoparticles by electric discharge plasma in liquid, Arch. Metall. Mater., 58, 2, (2013),425–429. doi: 10.2478/amm-2013-0011.
[13] H. B. Liu, G. Canizal, P. S. Schabes-Retchkiman, and J. A. Ascencio, Structural selection and amorphization of small Ni Ti bimetallic clusters,J. Phys. Chem. B, 110, 25, (2006), 12333–12339.  doi: 10.1021/jp061856e.
[14] A. R. Jabur, E. S. Al-Hassani, A. M. Al-Shammari, M. A. Najim, A. A. Hassan, and A. A. Ahmed, Evaluation of stem cells’ growth on electrospun polycaprolactone (PCL) scaffolds used for soft tissue applications, Energy Procedia, 119, (2017),61–71. doi: 10.1016/j.egypro.2017.07.048.
[15] N. M. J. Chayad, F. A. Hashim and A. R. Jabur, Effect of NaCl solution addition on improving some of the physical properties of nylon 6 solutions used for electro spinning purpose, 34, 7, (2016), 1265–1274.
[16] A. R. Jabur, Multiwall carbon nanotube / polyvinyl alcohol nanofibers film, electrical conductivity improvement, Eng. and Technol. J., 38, 3, Part (A), (2020),431–439.
[17] A. R. Jabur, L. K. Abbas, and S. M. Muhi, Effects of ambient temperature and needle to collector distance on PVA, Eng. and Technol. J., 35, 4, (2017), 340–347.
[18] A. R. Jabur, L.Abbas, and S. Muhi Aldain, Ambient temperature affect the pore size of PVA nanofibers tissues, Eng. & Tech. Journal, 33, part (B), 6, (2015),1040–1047.
[19] J. Bai, Y. Li, S. Yang, J. Du, S. Wang, J. Zheng, Y. Wang, Q. Yang, X. Chen,  X. Jing,  A simple and effective route for the preparation of poly(vinylalcohol) (PVA) nanofibers containing gold nanoparticles by electrospinning method,  Solid State Commun., 141, 5, (2007),292–295. doi: 10.1016/j.ssc.2006.10.024.
[20] U. Anjaneyulu, B. Priyadarshini, A. Nirmala Grace, and U. Vijayalakshmi, Fabrication and characterization of Ag doped hydroxyapatite-polyvinyl alcohol composite nanofibers and its in vitro biological evaluations for bone tissue engineering applications, J. Sol-Gel Sci. Technol., 81, 3, (2017),750–761. doi: 10.1007/s10971-016-4243-5.
[21] A. R. Jabur, M. H. Abdulmajeed, and S. Y. Abd, Effect of Cu nanoparticles addition on improving the electrical conductivity and mechanical properties of PVA electrospun polymeric film, AIP Conf. Proc., 1968, May, (2018), doi: 10.1063/1.5039203.
[22] S. M. Al-Saffar, E. S. Al-Hassani, R. A. Hussein, Characterization of Niti super elasticity shape memory alloys, Eng. & Tech. Journal, 31, 16, (2013), 3035–3051.
[23] J. Wang, Z. Pan, G. Yang, J. Han, X. Chen, and H. Li, Location dependence of microstructure, phase transformation temperature and mechanical properties on Ni-rich NiTi alloy fabricated by wire arc additive manufacturing, Mater. Sci. Eng. A, 749, February, (2019),218–222. doi: 10.1016/j.msea.2019.02.029.
[24] M. Badr, A. Mohammadzadeh, J. Khalil-Allafi, M. Khoshghadam-Pireyousefan, and A. Mostafaei, In-situ formation of TiN-TiO2 composite layer on NiTi shape memory alloy via fluidized bed reactor,Ceram. Int., 46, 13, (2020), 21097–21106. doi: 10.1016/j.ceramint.2020.05.184.
[25] N. Lepojević, I. Š´cepan, B. Gliši´, M. Jenko, M. Godec, S. Hoˇcevar and R. Rudolf, Characterisation of NiTi orthodontic archwires surface after the simulation of mechanical loading in CACO2-2 cell culture, Coatings, 9, 7, (2019), doi: 10.3390/coatings9070440.
[26] S. M. Al-Saffar, E. S. Al-Hassani, and F. J. Al-hassani, Effect of alloying elements (Mo and Al) on biomaterials Ti-Ta shape memory alloys, Eng. & Tech. Journal, 32, 4,2014 932-951.
[27] E. M. Saeed, N. M. Dawood, and S. F. Hasan, Improvement corrosion resistance of Ni-Ti alloy by TiO2coating and hydroxyaptite/TiO2 composite coating using micro arc oxidation process, Mater. Today Proc., 42,July, (2021),2789–2796. doi: 10.1016/j.matpr.2020.12.723.
[28] B. Li, L. Rong, and Y. Li, Microstructure and superelasticity of porous NiTi alloy, Sci. China, Ser. E Technol. Sci., 42, 1, (1999), 94–99. doi: 10.1007/BF02917064.
[29] E. S. Al-hassani and F. J. Al-hassani, Effect of dual surface activation on the surface roughness of titanium dental implant, Journal of Natural Sciences Research,7, 14, (2017),35-44.
[30] K. Choo, Y. C. Ching, C. H. Chuah, S. Julai, and N. S. Liou, Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber, Materials (Basel), 9, 8, (2016), 1–16. doi: 10.3390/ma9080644.