Document Type : Review Paper

Authors

1 Civil Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 Al-Musayyib Technical Institute, Babel, Iraq.

Abstract

Biomass’ pyrolysis process is responsible for producing the biochar charcoal, this process does not incorporate the oxygen, and it is utilized as a soil enhancer for each one of the carbon sequestration, and soil health prospects. Biochar can be defined as a stabilized solid which is enriched with carbon and could remain in the soil for extended period of time. Biochar has been studied as a way of carbon sequestration, and it might be a way used for handling climate change and global warming. It happens due to the processes that are associated with pyrogenic carbon capturing and storages. This review is focused on an overview of biochar preparation and application in the environment, previous studies and Applications. Biochar is prepared from various organic materials such as miscanthus, switch grass, corn stover, and sugarcane bagasse. The method of preparation varies with different temperatures and the discharge of nitrogen gas used for a period of one hour not to mention thermal decomposition at different temperatures of heat (500, 600, 700 and 800oC). The success of its use as a adsorbent material, and in treating the soil from heavy metals, its suitability for agriculture, and the treatment of the liquid leachate from solid waste down into the groundwater, in addition to the treatment of groundwater when the topography of the region differs.

Highlights

  • Review the different sources for preparing biochar.
  • Explanation of methods of preparation under different pyrolysis conditions.
  • Suitable for use as a soil treatment, and successful as an active permeable barrier to keep groundwater from pollutants.
  • The use of biochar for processing complies with the principles of sustainable development because it adopts the use of waste and recycling for its manufacture as an effective excellent in the treatment process and thus is environmentally safe and cost-effective.

Keywords

Main Subjects

[1] D. Solomon et al., Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian Dark Earths, Geochim. Cosmochim. Acta, 71, 9, 2007, 2285–2298. DOI: 10.1016/j.gca.2007.02.014.
[2] J. Lehmann, COMMENTARY, 447, 2007 , 10–11.
[3] J. F. Ponge et al., Ingestion of charcoal by the Amazonian earthworm Pontoscolex corethrurus: A potential for tropical soil fertility, Soil Biol. Biochem.,. 38, 7, 2006 , 2008–2009. DOI: 10.1016/j.soilbio.2005.12.024.
[4] P. Lumina, M. P. Pavithra, K. Yeshwanth, and J. K. R, Carbon-di-Oxide Capturing Using Biochar and Converting Biomass into Carbon-di-Oxide Capturing Using Biochar and Converting Biomass into Biochar,10. January, 2010.
[5] F.H. AL Ani, Gh.Y. AL-Kindi and N.Kh, Al-Bidri, Diclofenac Removal from Wastewater by Iraqi Pillared Clay, Engineering and Technology Journal, 37, Part C, 2,2019 , 281-288.
[6] D. Ghanim, Gh. Y. Al-Kindi and A. Kh. Hassan, Green synthesis of iron nanoparticles using black tea leaves extract as adsorbent for removing eriochrome blue-black B dye,Engineering and Technology Journal, 38, Part A, 10, 2020,1558-1569.
[7] S. T. Alnasrawy, G.Y Alkindi and T. M. Albayati,  Removal of high concentration phenol from aqueous solutions by electrochemical technique. Engineering and Technology Journal, 39. Part A. No.02. PP. 189-195, 2021.
[8] Y. Zhu, S. Tjokro Rahardjo, C. Valkenburg, L. Snowden-Swan, S. Jones, and M. Machinal, Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels (U.S. DOE), Doe, No. June, 152, 2011.
[9] D. O’Connor et al., Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review, J. Control. Release, 283, 2017, 200–213, 2018, DOI: 10.1016/j.jconrel.2018.06.007.
[10] K. Crombie, O. Mašek, S. P. Sohi, P. Brownsort, and A. Cross, The effect of pyrolysis conditions on biochar stability as determined by three methods, GCB Bioenergy, 5, 2,2013, 122–131, 2013, DOI: 10.1111/gcbb.12030.
[11] X. Yang, S. Zhang, M. Ju, and L. Liu, Preparation and modification of biochar materials and their application in soil remediation, Appl. Sci., 9, 7, 2019, DOI: 10.3390/app9071365.
[12] F. Verheijen, S. Jeffery, A. C. Bastos, M. Van Der Velde, and I. Diafas, Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions, 8, 4. 2010.
[13] D. Chen, Z. Zheng, K. Fu, Z. Zeng, J. Wang, and M. Lu, Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products, Fuel, 159, 2015,27–32.DOI: 10.1016/j.fuel.2015.06.078.
[14] K. C. Choi, E. K. Lee, S. Y. Choi, and S. J. Park, Electrical and physical properties of magnetite-filled NBR,Polym.,. 27, 1, 2003,40–45.
[15] L. A. Metz, N. K. Meruva, S. L. Morgan, and S. R. Goode, UV laser pyrolysis fast gas chromatography/time-of-flight mass spectrometry for rapid characterization of synthetic polymers: Optimization of instrumental parameters, J. Anal. Appl. Pyrolysis, 71, 1, 2004,327–341. DOI: 10.1016/S0165-2370(03)00091-3.
[16] L. Tang and H. Huang, Plasma pyrolysis of biomass for production of syngas and carbon adsorbent, Energy and Fuels, 19,. 3,2005 , 1174–1178. DOI: 10.1021/ef049835b.
[17] S. Yaman, Pyrolysis of biomass to produce fuels and chemical feedstocks, Energy Convers. Manag., 45, 5, 2004,651–671.DOI: 10.1016/S0196-8904(03)00177-8.
[18] R. Chatterjee et al., Effect of Pyrolysis Temperature on PhysicoChemical Properties and Acoustic-Based Amination of Biochar for Efficient CO2 Adsorption, Front. Energy Res., 8,2020,1–18, DOI: 10.3389/fenrg.2020.00085.
[19] M. Ahmad et al., Biochar as a sorbent for contaminant management in soil and water: A review, Chemosphere, 99, 2014,19–33. DOI: 10.1016/j.chemosphere.2013.10.071.
[20] M. M. Hassan and C. M. Carr, A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents, Chemosphere, 209,2018, 201–219.DOI: 10.1016/j.chemosphere.2018.06.043.
[21] D. C. K. Ko, C. W. Cheung, K. K. H. Choy, J. F. Porter, and G. McKay, Sorption equilibria of metal ions on bone char, Chemosphere, 54, 3, 2004 ,273–281.DOI: 10.1016/j.chemosphere.2003.08.004.
[22] W. S. Wan Ngah and M. A. K. M. Hanafiah, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review, Bioresour. Technol., 99, 10, 2008,3935–3948. DOI: 10.1016/j.biortech.2007.06.011.
[23]  J. Pan, J. Jiang, and R. Xu, Adsorption of Cr(III) from acidic solutions by crop straw derived biochars, J. Environ. Sci. (China), 25, 10, 2013,1957–1965. DOI: 10.1016/S1001-0742(12)60305-2.
[24] R. kou Xu, S. cheng Xiao, J. hua Yuan, and A. zhen Zhao, Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues, Bioresour. Technol., 102, 22, 2011,10293–10298.DOI: 10.1016/j.biortech.2011.08.089.
[25] X. Xu, X. Cao, L. Zhao, H. Wang, H. Yu, and B. Gao, Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar, Environ. Sci. Pollut. Res., 20, 1, 2013,358–368.DOI: 10.1007/s11356-012-0873-5.
[26] L. Qian, B. Chen, and D. Hu, Effective alleviation of aluminum phytotoxicity by manure-derived biochar, Environ. Sci. Technol., 47, 6,2013 , 2737–2745.DOI: 10.1021/es3047872.
[27] M. Jia et al., Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar, Bioresour. Technol., 136, .2013, 87–93.DOI: 10.1016/j.biortech.2013.02.098.
[28] M. Zhang, B. Gao, S. Varnoosfaderani, A. Hebard, Y. Yao, and M. Inyang, Preparation and characterization of a novel magnetic biochar for arsenic removal, Bioresour. Technol., 130, 2013,457–462. DOI: 10.1016/j.biortech.2012.11.132.
[29] R. J. Smernik, J. A. Baldock, J. M. Oades, and A. K. Whittaker, Determination of T1ρH relaxation rates in charred and uncharred wood and consequences for NMR quantitation, Solid State Nucl. Magn. Reson., 22, 1, 2002,50–70 . DOI: 10.1006/snmr.2002.0064.
[30] E. W. Murage, P. Voroney, and R. P. Beyaert, Turnover of carbon in the free light fraction with and without charcoal as determined using the 13C natural abundance method, Geoderma, 138, 1–2, 2007. 133–143. DOI: 10.1016/j.geoderma.2006.11.002.
[31] S. M. Haefele et al., Effects and fate of biochar from rice residues in rice-based systems, F. Crop. Res., 121, 3, 2011,430–440. DOI: 10.1016/j.fcr.2011.01.014.
[32] K. Hammes, R. J. Smernik, J. O. Skjemstad, and M. W. I. Schmidt, “Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy, Appl. Geochemistry, 23, 8, 2008,2113–2122. DOI: 10.1016/j.apgeochem.2008.04.023.
[33] J. T. Yu, A. M. Dehkhoda, and N. Ellis, Development of biochar-based catalyst for transesterification of canola oil, Energy and Fuels, 25,. 1, 2011, 337–344.DOI: 10.1021/ef100977d.
[34] J. Lehmann, J. Gaunt, and M. Rondon, Bio-char sequestration in terrestrial ecosystems - A review, Mitig. Adapt. Strateg. Glob. Chang., 11, 2, 2006,403–427.DOI: 10.1007/s11027-005-9006-5.
[35] M. S. Hasan Khan Tushar, N. Mahinpey, A. Khan, H. Ibrahim, P. Kumar, and R. Idem, Production, characterization and reactivity studies of chars produced by the isothermal pyrolysis of flax straw, Biomass and Bioenergy, 37, 2012,97–105. DOI: 10.1016/j.biombioe.2011.12.027.
[36] Y. Qiu, Z. Zheng, Z. Zhou, and G. D. Sheng, Effectiveness and mechanisms of dye adsorption on a straw-based biochar, Bioresour. Technol., 100, 21, 2009, 5348–5351,. DOI: 10.1016/j.biortech.2009.05.054.
[37] S. Cheng, J. H. Jang, B. A. Dempsey, and B. E. Logan, Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies, Water Res., 45, 1, 2011,303–307. DOI: 10.1016/j.watres.2010.07.054.
[38] H. P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon N. Y., 32, 5,1994, 759–769.DOI: 10.1016/0008-6223(94)90031-0.
[39] H. Cohen-Ofri, R. Popovitz-Biro, and S. Weiner, Structural characterization of modern and fossilized charcoal produced in natural fires as determined by using electron energy loss spectroscopy, Chem. - A Eur. J., 13, 8, 2007 , 2306–2310. DOI: 10.1002/chem.200600920.
[40] F. M. Pellera et al., Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products, J. Environ. Manage., 96, 1,2012, 35–42. DOI: 10.1016/j.jenvman.2011.10.010.
[41] S. Zhou, D. Mourant, C. Lievens, Y. Wang, C. Z. Li, and M. Garcia-Perez, Effect of sulfuric acid concentration on the yield and properties of the bio-oils obtained from the auger and fast pyrolysis of Douglas Fir, Fuel, 104, 2013,536–546. DOI: 10.1016/j.fuel.2012.06.010.
[42] H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, and R. Qiu, Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar ,Water Res., 46, 3, 2012,854–862. DOI: 10.1016/j.watres.2011.11.058.
[43] J. W. Lee et al., Characterization of biochars produced from cornstovers for soil amendment, Environ. Sci. Technol., 44, 20,2010,. 7970–7974. DOI: 10.1021/es101337x.
[44] A. Swiatkowski, M. Pakula, S. Biniak, and M. Walczyk, Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead(II) ions, Carbon N. Y., 42, 15, 2004,3057–3069.DOI: 10.1016/j.carbon.2004.06.043.
[45] S. E. Hale, K. Hanley, J. Lehmann, A. R. Zimmerman, and Gerard Cornelissen, Erratum: Effects of chemical, biological, and physical aging as well as soil addition on the sorption (Environmental Science and Technology (2011) 45 (10445-10453)of pyrene to activated carbon and biochar, Environ. Sci. Technol., 46, 4, 2012,2479–2480. DOI: 10.1021/es3001097.
[46] G. N. Kasozi, A. R. Zimmerman, P. Nkedi-Kizza, and B. Gao, Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars), Environ. Sci. Technol., 44, 16, 2010,6189–6195.DOI: 10.1021/es1014423.
[47] D. Angin, Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake, Bioresour. Technol., 128, 2013,593–597. DOI: 10.1016/j.biortech.2012.10.150.
[48] J. Harmsen and R. Naidu, Bioavailability as a tool in site management, J. Hazard. Mater., 261, 2013,840–846, DOI: 10.1016/j.jhazmat.2012.12.044.
[49] K. B. Cantrell, P. G. Hunt, M. Uchimiya, J. M. Novak, and K. S. Ro, Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar, Bioresour. Technol., 107,2012, 419–428, DOI: 10.1016/j.biortech.2011.11.084.
[50] Y. Gao et al., Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption, Chem. Eng. J., 217, 2013,345–353.DOI: 10.1016/j.cej.2012.09.038.
[51] Y. Qiu, X. Xiao, H. Cheng, Z. Zhou, and G. D. Sheng, Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter, Environ. Sci.Technol.,. 43,. 13,. 4973–4978, 2009, DOI: 10.1021/es900573d.
[52] P. Mitchell, T. Dalley, R. Helleur, Preliminary laboratory production andcharacterization of biochars from lignocellulosic municipal waste, J. Anal. Appl.Pyrol. 99 (2013) 71-78. DOI:10.1016/j.jaap.2012.10.025
[53] A. Enders, K. Hanley, T. Whitman, S. Joseph, J. Lehmann, Characterization ofbiochars to evaluate recalcitrance and agronomic performance, Bioresour. Technol.114 (2012) 644-653. DOI:10.1016/j.biortech.2012.03.022
[54] D. Aller, S. Bakshi, and D. A. Laird, Modified method for proximate analysis of biochars, J. Anal. Appl. Pyrolysis, 124, 2017,335–342. DOI: 10.1016/j.jaap.2017.01.012.
[55] Kim WK, Shim T, Kim YS, Hyun S, Ryu C, Park YK, Jung J. Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresour Technol [Internet] 2013 Jun;138:266–70. DOI: 10.1016/j.biortech.2013.03.186. [cited 2020 Apr 9] Available from: Subscription required to view. [PubMed] [CrossRef] [Google Scholar]
[56] Kilic M, Kirbiyik C, Cepeliogullar O, Putun A. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Appl Surf Sci [Internet] 2013 Oct 15;283:856–62. DOI: 10.1016/j.apsusc.2013.07.033. [cited 2020 Apr 9] Available from: Subscription required to view. [CrossRef] [Google Scholar]
[57] Jiang S, Huang L, Nguyen TA, Ok YS, Rudolph V, Yang H, Zhang D. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere [Internet] 2016 Jan;142:64–71. DOI: 10.1016/j.chemosphere.2015.06.079. [cited 2020 Apr 9] Available from: Subscription required to view. [PubMed] [CrossRef] [Google Scholar]
[58] Takaya CA, Fletcher LA, Singh S, Anyikude KU, Ross AB. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere [Internet] 2016 Feb;145:518–27. DOI: 10.1016/j.chemosphere.2015.11.052. [cited 2020 Apr 9] Available from: Subscription required to view. [PubMed] [CrossRef] [Google Scholar]
[59] Peng P, Lang YH, Wang XM. Adsorption behavior and mechanism of pentachlorophenol on reed biochars: pH effect, pyrolysis temperature, hydrochloric acid treatment and isotherms. Ecol Eng [Internet] 2016 May;90:225–33. DOI: 10.1016/j.ecoleng.2016.01.039. [cited 2020 Apr 9] Available from: Subscription required to view. [CrossRef] [Google Scholar]
[60] C. E. Brewer and R. C. L. D. a Brown, Biochar characterization and engineering, Grad. Teses Diss., p. 12284, 2012, [Online]. Available: http://search.proquest.com/docview/1023114544?accountid=27932.
[61] LanfangHanKeSunYanYang,XinghuiXia,FangbaiLZhifengYang,BaoshanXing (2020), Biochar’s stability and effect on the content, composition and turnover of soil organic carbon, GeodermaVolume 364, 114184
[62] M. Uchimiya, L. H. Wartelle, K. T. Klasson, C. A. Fortier, and I. M. Lima, Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil, J. Agric. Food Chem., 59, 6, 2011,2501–2510.DOI: 10.1021/jf104206c.
[63] L. Zhang, Q. Wang, B. Wang, G. Yang, L. A. Lucia, and J. Chen, Hydrothermal carbonization of corncob residues for hydrochar production, Energy and Fuels, 29, 2, 2015, 872–876. DOI: 10.1021/ef502462p.
[64] Z. Song, F. Lian, Z. Yu, L. Zhu, B. Xing, and W. Qiu, Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution, Chem. Eng. J., 242, 2014,36–42.DOI: 10.1016/j.cej.2013.12.061.
[65] P. Sun, C. Hui, R. A. Khan, J. Du, Q. Zhang, and Y. H. Zhao, Efficient removal of crystal violet using Fe3O4-coated biochar: The role of the Fe3O4 nanoparticles and modeling study their adsorption behavior, Sci. Rep., 5, No. July, 2015,1–12. DOI: 10.1038/srep12638.
[66] A. A. Abdelhafez and J. Li, Removal of Pb(II) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel, J. Taiwan Inst. Chem. Eng., 61, 2016,367–375. DOI: 10.1016/j.jtice.2016.01.005.
[67] N. A. S. Mohammed, R. A. Abu-Zurayk, I. Hamadneh, and A. H. Al-Dujaili, Phenol adsorption on biochar prepared from the pine fruit shells: Equilibrium, kinetic and thermodynamics studies, J. Environ. Manage., 226, May, 2018,377–385. DOI: 10.1016/j.jenvman.2018.08.033.
[68] M. D. Huff, S. Marshall, H. A. Saeed, and J. W. Lee, Surface oxygenation of biochar through ozonization for dramatically enhancing cation exchange capacity, Bioresour. Bioprocess., 5, 1, 2018. DOI: 10.1186/s40643-018-0205-9.
[69] X. Jian et al., Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis, Environ. Technol. Innov., 10, 2018,27–35. DOI: 10.1016/j.eti.2018.01.004.
[70] L. Li, M. Yang, Q. Lu, W. Zhu, H. Ma, and L. Dai, Oxygen-rich biochar from torrefaction: A versatile adsorbent for water pollution control, Bioresour. Technol., 294, September, 2019,122142, DOI: 10.1016/j.biortech.2019.122142.
[71] J. H. Park, J. J. Wang, Y. Meng, Z. Wei, R. D. DeLaune, and D. C. Seo, Adsorption/desorption behavior of cationic and anionic dyes by biochars prepared at normal and high pyrolysis temperatures, Colloids Surfaces A Physicochem. Eng. Asp., 572, February, 2019,274–282.DOI: 10.1016/j.colsurfa.2019.04.029.
[72] P. Q. Thang, K. Jitae, B. L. Giang, N. M. Viet, and P. T. Huong, Potential application of chicken manure biochar towards toxic phenol and 2,4-dinitrophenol in wastewaters,J. Environ. Manage., 251, August, 2019, 109556.DOI: 10.1016/j.jenvman.2019.109556.
[73] I. Ali et al., Biochar addition coupled with nitrogen fertilization impacts on soil quality, crop productivity, and nitrogen uptake under double-cropping system, Food Energy Secur., 9, 3, 2020,1–20.DOI: 10.1002/fes3.208.
[74] B. Wang, M. Ran, G. Fang, T. Wu, and Y. Ni, Biochars from lignin-rich residue of furfural manufacturing process for heavy metal ions remediation,Materials (Basel)., 13, 5, 2020, DOI: 10.3390/ma13051037.
[75] Y. Ding et al., Biochar to improve soil fertility. A review, Agron. Sustain. Dev., 36, 2, 2016, DOI: 10.1007/s13593-016-0372-z.
[76] R. K. Y. M.R. Yadav, R. K. C.M. Parihar, N. Y. R. Bajiya, H. R. R.K. Meena, and D. K. Y. B. Yadav, Role of Biochar in Mitigation of Climate Change through Carbon Sequestration, Int. J. Curr. Microbiol. Appl. Sci., 6, No. 4, 2017,859–866.DOI: 10.20546/ijcmas.2017.604.107.
[77] G. Agegnehu, A. K. Srivastava, and M. I. Bird, The role of biochar and biochar-compost in improving soil quality and crop performance: A review, Appl. Soil Ecol., 119, October 2016, 2017,156–170. DOI: 10.1016/j.apsoil.2017.06.008.
[78] A. A. H. Faisal, I. M. Ali, L. A. Naji, H. M. Madhloom, and N. Al-Ansari, Using different materials as a permeable reactive barrier for remediation of groundwater contaminated with landfill’s leachate, Desalin. Water Treat., 175, 2020,152–163.DOI: 10.5004/dwt.2020.24890.
[79] A. A. H. Faisal, I. M. Ali, L. A. Naji, H. M. Madhloom, and N. Al-Ansari, Using different materials as a permeable reactive barrier for remediation of groundwater contaminated with landfill’s leachate, Desalin. Water Treat., 175,2020, 152–163.  DOI: 10.5004/dwt.2020.24890.
[80] S. Nanda, A. K. Dalai, F. Berruti, and J. A. Kozinski, Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials, Waste and Biomass Valorization, 7, 2, 2016,201–235.DOI: 10.1007/s12649-015-9459-z