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H I G H L I G H T S   A B S T R A C T  
• Temperature variation, inclination angle, 

and aspect ratio have strongly affected on 
vibration characteristics of pipe-fluid 
system. 

• Thermal effects in the pipe are very 
important factor and more significant in 
comparison with the internal fluid velocity. 

• Inclination angle has larger impact on 
vibration characteristics at higher aspect 
ratio. 

 The investigation of the vibration of pipes containing flowing fluid is very 
essential to obtain an understanding of their dynamic behavior and prevent their 
catastrophic failure due to fatigue. Pipelines are subjected to environmental static 
and dynamic loading including self-weight, restoring, and Carioles forces. This 
research aims to investigate the vibrations of pipeline structures for examining 
their structural integrity under these conditions. A linear Euler-Bernoulli beam 
model is used to analyze the dynamic response of flexible, inclined, and fixed 
ends pipe conveying fluid made of polypropylene random-copolymer. Closed-
form expression for dynamic response is presented by using combining of finite 
Fourier sine and Laplace transforms method. The influences of the inclination 
angle, thermal load, and aspect ratio (ratio of outside diameter to the length of 
pipe) on the dynamical behavior of the pipe–fluid system are studied. The 
obtained results attest to the importance of considering combining effects of the 
inclination angle, thermal load, and aspect ratio in analyzing and designing pipe 
conveying fluid. It is observed that the dynamic deflection can be significantly 
increased by increasing temperature, aspect ratio, and fluid velocity, while it 
reduced by increasing the inclination angle with the horizontal axis in the range 
of (0-90). 
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1. Introduction 
Modern improvements in engineering materials and cost reduction have made the investigation of the vibration 

characteristics of pipes containing flowing fluid to be an essential issue. This problem arises from the fact that the dynamic 
behavior of a component can be strongly changed when it is in contact with the fluid. Fluid force effect on structure movement 
at the interface region between the two domains, and consequently the new position of the structure can affect the flowing 
fluid. These oscillations can lead to damage to the components and instabilities may occur. Hence, for practical applications, it 
is necessary to be able to catch the dynamical behavior up to which the component can lose its stable behavior [1]. Pipelines 
containing flowing fluid play a very important role in industrial applications and they are common components in many 
engineering fields that can be found in aviation, cosmonautics, chemical, oil and gas automotive, and marine industries [2, 3]. 
Therefore, how to get the dynamic behavior of elastic pipes became a hot topic leading to a good number of studies, over the 
past 50 years, about the linear and nonlinear dynamics of pipes conveying fluid with different end conditions [3-10]. 

Recently, Ze-Qi Lu et al. [11] investigated the effect of vibration on fatigue strength of fixed end pipe conveying fluid. 
They found that internal resonance can reduce the fatigue life of pipes. Pipe with variable wall thickness was analyzed by Y. 
Amine et al. [12]. It is demonstrated that the effect of Coriolis forces is more important at a higher mass ratio β. D.B. Jacobi et 
al. [13] studied numerically and analytically the effect of varying density on the dynamic behavior of pipes conveying fluid. 
Their most important finding was that the density affects stability most crucially at the discharging end of the pipe. The 
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influences of adding point masses and springs on the stability of horizontal and vertical pipelines containing flowing fluid were 
studied by J. El Najjar, and F. Daneshmand [14]. They observed the possibility of increasing the critical flow velocity by 
adding a spring and a point mass at specific positions depending on the mass ratio β of the system. An overview that 
summarizes the mechanical behavior of pipes containing flowing fluid was presented by R. A. Ibrahim [15]. He discusses 
pipe-fluid system problems including various types of modeling, dynamic analysis, and stability regimes of pipes containing 
flowing fluid under different types of end conditions, working environments, and geometrical parameters. Most of the previous 
studies adopt numerical or approximate approaches, like the Galleria method [14], transfer matrix [16], finite element [17], 
etc., hence, an attempt was performed in the current study to present an analytical solution for pipe conveying fluid problem 
based on integral transform technique by using a mixing of finite Fourier sine and Laplace transforms.  For the time being, 
thermal fluid-structure analysis plays a major role in modern technologies. Frequently, the separate consideration of the 
structural mechanics, fluid mechanics, and heat transfer does not reflect the real case because there are significant coupling 
influences such as a deformed structure as a result of thermal expansion and fluid loads or heat transfer due to the friction of a 
fluid. Thus, one of the objectives of the current study is to consider the effect of thermal loading on the dynamic response of 
pipes that flow inside its incompressible fluid. On the other hand, from observing available studies, it is clear that the dynamic 
behavior of pipelines containing flowing fluid has been investigated quite extensively and important results have been 
accomplished. However, few studies treat inclined systems and the influences of the inclination angle on the dynamic 
characteristics of the systems. The dynamic response of the inclined pipe is somewhat different from that of the horizontal or 
vertical pipe because of an additional deflection of the inclined pipe due to the gravitational component. It should also be noted 
that most of the scholars have not studied the related issues that operate under the thermal environment, which makes the 
current study on this subject necessary. To compensate for the lack of ongoing research as mentioned above, the present work 
is aimed at studying the combining effects of the supported angle, aspect ratio, and temperature variation on the dynamical 
behavior of a clamped-clamped pipe conveying fluid, which, to our knowledge, has never been previously examined. A closed 
analytical form solution for the equation of motion was offered by using the mixing of finite Fourier sine and Laplace 
transforms. 

2. Equation of motion 
The system under consideration is illustrated in Figure 1 that comprises an elastic inclined pipe of length L, flexural 

rigidity EI, cross-section Ap with mass per unit length mp. The pipe is fixed at both ends and contains an incompressible 
flowing fluid with mass per unit length mf and mean axial flow velocity U which is assumed to be uniform across the pipe 
cross-section.  

 
Figure 1: Schematic of the pipe conveying fluid 

By ignoring internal damping, dissipation, external tension, and internal pressurization, the equation of motion for the 
inclined pipe conveying fluid under thermal loading is obtained as [18, 19]: 

 𝐸𝐸𝐸𝐸 𝜕𝜕
4𝑦𝑦

𝜕𝜕𝑥𝑥4
− ��𝑚𝑚𝑓𝑓 + 𝑚𝑚𝑝𝑝�(𝐿𝐿 − 𝑥𝑥)𝑔𝑔 sin𝜃𝜃 − 𝑁𝑁 −𝑚𝑚𝑓𝑓𝑈𝑈2� 𝜕𝜕

2𝑦𝑦
𝜕𝜕𝑥𝑥2

+ �𝑚𝑚𝑓𝑓 + 𝑚𝑚𝑝𝑝�𝑔𝑔 sin𝜃𝜃 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ �𝑚𝑚𝑓𝑓 +

𝑚𝑚𝑝𝑝�𝑔𝑔 cos 𝜃𝜃 + 2𝑚𝑚𝑓𝑓𝑈𝑈
𝜕𝜕2𝑦𝑦
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ �𝑚𝑚𝑓𝑓 + 𝑚𝑚𝑝𝑝�
𝜕𝜕2𝑦𝑦
𝜕𝜕𝑡𝑡2

= 0   (1) 

Where g is the acceleration of gravity, θ is the support angle between the pipe and the horizontal axis, N is thermal load, 
y(x, t) is the lateral displacement of the pipe; x and t are the axial coordinate and time, respectively. N can be determined by 
the formula: 

 N = αApEΔT  (2) 

Where α is the coefficient of thermal expansion (1/ oC), L is the pipe length (m). ΔT= Tx -Ti is the temperature difference 
(oC). Ti is the laboratory temperature (oC), Tx is the instantaneous temperature (oC). 

Equation 1 always can be rewritten in dimensionless form as 

 ∂4ϕ
∂ζ4

− �(1 − ζ)G sin θ − N − υ2� ∂
2ϕ
∂ζ2

+ G sin θ ∂η
∂ζ

+ G cos θ + ∂2ϕ

∂t
2 − 2β

1
2 υ ∂2ϕ

∂ζ∂t
= 0  (3) 
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Where; 

𝜙𝜙 =
𝑦𝑦
𝐿𝐿

,   𝜁𝜁 =
𝑥𝑥
𝐿𝐿

,𝛽𝛽 =
𝑚𝑚𝑓𝑓

𝑚𝑚𝑓𝑓 + 𝑚𝑚𝑝𝑝
,𝐺𝐺 =

�𝑚𝑚𝑓𝑓 + 𝑚𝑚𝑝𝑝�𝑔𝑔𝐿𝐿3

𝐸𝐸𝐸𝐸
, 𝜐𝜐 = �

𝑚𝑚𝑓𝑓

𝐸𝐸𝐸𝐸
�
1
2
𝑈𝑈𝑈𝑈 , 𝑡𝑡 =

1
𝐿𝐿2
�

𝐸𝐸𝐸𝐸
𝑚𝑚𝑓𝑓 + 𝑚𝑚𝑝𝑝

�

1
2
 

In other forms 

 ϕ′′′′ − �(1 −  ζ)G sinθ − N − υ2�ϕ′′ + G sin θϕ′ + 2β
1
2 υϕ̇′ + ϕ̈  = −G cos θ  (4) 

2.1 Solution method 
Equation 3 can be discreted and transformed into an ordinary differential equation by introducing the term 𝜙𝜙( 𝜁𝜁, 𝜏𝜏) to 

decompose the equation into space and time as follows 

 𝜙𝜙� 𝜁𝜁, 𝑡𝑡� = Γ( 𝜁𝜁)Λ�𝑡𝑡�  (5)     

Where Λ�𝑡𝑡� the generalized coordinate of the system and Γ( 𝜁𝜁) are trial/comparison functions satisfying both the 
geometrical and natural boundary conditions by substituting (5) in (4)  

Γ′′′′( 𝜁𝜁)Λ�𝑡𝑡� − �(1 −  𝜁𝜁)𝐺𝐺 sin𝜃𝜃 − 𝑁𝑁 − 𝜐𝜐2�Γ′′( 𝜁𝜁)Λ�𝑡𝑡� + 𝐺𝐺 sin𝜃𝜃 Γ′( 𝜁𝜁)Λ�𝑡𝑡� + 𝐺𝐺 cos 𝜃𝜃 +

2𝛽𝛽
1
2 𝜐𝜐Γ′( 𝜁𝜁)Λ̇�𝑡𝑡� + Γ( 𝜁𝜁)Λ̈�𝑡𝑡� = 0   (6) 

To suppress the time dependency, the Laplace transform was introduced by assuming zero initial conditions case.  

Γ′′′′( 𝜁𝜁)Λ(𝑠𝑠) − �(1 −  𝜁𝜁)𝐺𝐺 sin𝜃𝜃 − 𝑁𝑁 − 𝜐𝜐2�Γ′′( 𝜁𝜁)Λ(𝑠𝑠) + 𝐺𝐺 sin𝜃𝜃 Γ′( 𝜁𝜁)Λ(𝑠𝑠) + 𝐺𝐺
𝑠𝑠

cos 𝜃𝜃 +

2𝛽𝛽
1
2 𝜐𝜐Γ′( 𝜁𝜁)𝑠𝑠Λ(𝑠𝑠) + Γ( 𝜁𝜁)𝑠𝑠2Λ(𝑠𝑠) = 0   (7) 

Then, a finite Fourier sine transform was introduced to convert eq. 6 into superimposed double degrees of freedom system.  

Λ(𝑠𝑠)∫ Γ′′′′( 𝜁𝜁)1
0 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − �𝐺𝐺 sin𝜃𝜃 − 𝑁𝑁 − 𝜐𝜐2�Λ(𝑠𝑠)∫ Γ′′( 𝜁𝜁)1

0 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 +
𝐺𝐺 sin𝜃𝜃 Λ(𝑠𝑠)∫ 𝜁𝜁Γ′′( 𝜁𝜁)1

0 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐺𝐺 sin𝜃𝜃 Λ(𝑠𝑠)∫ Γ′(𝜁𝜁)1
0 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 +

2𝛽𝛽
1
2 𝜐𝜐𝜐𝜐Λ(𝑠𝑠)∫ Γ′(𝜁𝜁)1

0 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑠𝑠2Λ(𝑠𝑠)∫ Γ(𝜁𝜁)1
0 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = −𝐺𝐺

𝑠𝑠
cos 𝜃𝜃 ∫ (1)1

0 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  (8) 

Γ(𝜁𝜁) Is beam Eigen functions, for clamped support case and in polynomial form we have: 

 Γ(𝜁𝜁) = 𝑎𝑎𝑜𝑜 + 𝑎𝑎1𝜁𝜁 + 𝑎𝑎2𝜁𝜁2 + 𝑎𝑎3𝜁𝜁3 + 𝑎𝑎4𝜁𝜁4  (9) 

Applying the boundary conditions for clamped support 

 

at 𝜁𝜁 = 0, 𝜙𝜙 = 0 and  ∂𝜙𝜙 ∂𝜁𝜁⁄ = 0 ,    at 𝜁𝜁 = 1,   𝜙𝜙 = 0 and  ∂𝜙𝜙 ∂𝜁𝜁⁄ = 0 

Gives  

 Γ(𝜁𝜁) = (𝜁𝜁4 − 2𝜁𝜁3 + 𝜁𝜁2)𝑎𝑎4  (10) 

By using orthogonal functions, it can be obtained 

 𝑎𝑎4 = 3√70 �� 1
𝑎𝑎5(70𝑎𝑎4−315𝑎𝑎3+540𝑎𝑎2−420𝑎𝑎+126)

�  (11) 

For 𝑎𝑎 = 1, it can be find 𝑎𝑎4= 25.20 for the first mode. 
Furthermore, noting that 
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∫ 𝑌𝑌(𝜉𝜉)1
0 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 24

𝑛𝑛5𝜋𝜋5
(1 + (−1)𝑛𝑛+1) − 2

𝑛𝑛3𝜋𝜋3
(1 + (−1)𝑛𝑛+1) 

∫ 𝑌𝑌′(𝜉𝜉)1
0 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 12

𝑛𝑛3𝜋𝜋3
(1 + (−1)𝑛𝑛)                                                

∫ 𝑌𝑌′′(𝜉𝜉)1
0 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 2

𝑛𝑛𝑛𝑛
(1 + (−1)𝑛𝑛+1) − 24

𝑛𝑛3𝜋𝜋3
(1 + (−1)𝑛𝑛+1) 

∫ 𝜉𝜉𝑌𝑌′′(𝜉𝜉)1
0 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 24

𝑛𝑛3𝜋𝜋3
(1 + 2(−1)𝑛𝑛) + 2(−1)𝑛𝑛+1

𝑛𝑛𝑛𝑛
                   

∫ 𝑌𝑌′′′′(𝜉𝜉)1
0 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 24

𝑛𝑛𝑛𝑛
(1 + (−1)𝑛𝑛+1)                                           

∫ (1)1
0 sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �1+(−1)𝑛𝑛+1�

𝑛𝑛𝑛𝑛
= 1𝐹𝐹                                                    ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

  (12) 

On substituting eq. (12) in eq. (8) 

24
𝑛𝑛𝑛𝑛

(1 + (−1)𝑛𝑛+1)𝑞𝑞(𝑠𝑠) − �𝑔𝑔 sin𝜃𝜃 − 𝑁𝑁 − 𝜐𝜐2� � 2
𝑛𝑛𝑛𝑛

(1 + (−1)𝑛𝑛+1) − 24
𝑛𝑛3𝜋𝜋3

(1 + (−1)𝑛𝑛+1)� 𝑞𝑞(𝑠𝑠) +

𝑔𝑔 sin𝜃𝜃 � 24
𝑛𝑛3𝜋𝜋3

(1 + 2(−1)𝑛𝑛) + 2(−1)𝑛𝑛+1

𝑛𝑛𝑛𝑛
� 𝑞𝑞(𝑠𝑠) + 𝑔𝑔 sin𝜃𝜃 12

𝑛𝑛3𝜋𝜋3
(1 + (−1)𝑛𝑛)𝑞𝑞(𝑠𝑠) − 2𝛽𝛽

1
2 𝜐𝜐𝜐𝜐 12

𝑛𝑛3𝜋𝜋3
(1 +

(−1)𝑛𝑛)𝑞𝑞(𝑠𝑠) + 𝑠𝑠2 � 24
𝑛𝑛5𝜋𝜋5

(1 + (−1)𝑛𝑛+1) − 2
𝑛𝑛3𝜋𝜋3

(1 + (−1)𝑛𝑛+1)� 𝑞𝑞(𝑠𝑠) = −𝑔𝑔
𝑠𝑠

cos 𝜃𝜃  1(ℱ)  (13) 

Rearrange  

�𝑠𝑠2 � 24
𝑛𝑛5𝜋𝜋5

(1 + (−1)𝑛𝑛+1) − 2
𝑛𝑛3𝜋𝜋3

(1 + (−1)𝑛𝑛+1)� + 𝑠𝑠 �2𝛽𝛽
1
2 𝜐𝜐 � 12

𝑛𝑛3𝜋𝜋3
(1 + (−1)𝑛𝑛)�� +

24
𝑛𝑛𝑛𝑛

(1 + (−1)𝑛𝑛+1) − �𝑁𝑁 + 𝜐𝜐2� � 2
𝑛𝑛𝑛𝑛

(1 + (−1)𝑛𝑛+1) − 24
𝑛𝑛3𝜋𝜋3

(1 + (−1)𝑛𝑛+1)� +

𝐺𝐺 sin𝜃𝜃 � 2
𝑛𝑛𝑛𝑛

(1 + (−1)𝑛𝑛+1) − 24
𝑛𝑛3𝜋𝜋3

(1 + (−1)𝑛𝑛+1) + 24
𝑛𝑛3𝜋𝜋3

(1 + 2(−1)𝑛𝑛) + 2(−1)𝑛𝑛+1

𝑛𝑛𝑛𝑛
+

12
𝑛𝑛3𝜋𝜋3

(1 + (−1)𝑛𝑛)�� Λ(𝑠𝑠) = −𝐺𝐺
𝑠𝑠

cos 𝜃𝜃  1(ℱ)  (14) 

Let  

  Ζ𝑓𝑓1 = 2𝛽𝛽
1
2 𝜐𝜐 � 12

𝑛𝑛3𝜋𝜋3
(1 + (−1)𝑛𝑛)�  (15) 

  Ζ𝑓𝑓2 = 24
𝑛𝑛𝑛𝑛

(1 + (−1)𝑛𝑛+1) − �𝑁𝑁 + 𝜐𝜐2� � 2
𝑛𝑛𝑛𝑛

(1 + (−1)𝑛𝑛+1) − 24
𝑛𝑛3𝜋𝜋3

(1 + (−1)𝑛𝑛+1)� +

𝐺𝐺 sin𝜃𝜃 � 2
𝑛𝑛𝑛𝑛

(1 + (−1)𝑛𝑛+1) − 24
𝑛𝑛3𝜋𝜋3

(1 + (−1)𝑛𝑛+1) + 24
𝑛𝑛3𝜋𝜋3

(1 + 2(−1)𝑛𝑛) + 2(−1)𝑛𝑛+1

𝑛𝑛𝑛𝑛
+ 12

𝑛𝑛3𝜋𝜋3
(1 +

(−1)𝑛𝑛)�  (16) 

 ∴ �𝑠𝑠2 24
𝑛𝑛5𝜋𝜋5

(1 + (−1)𝑛𝑛+1) + Ζ𝑓𝑓1𝑠𝑠 + Ζ𝑓𝑓2� Λ(𝑠𝑠) = −𝐺𝐺
𝑠𝑠

cos𝜃𝜃  1(ℱ)  (17) 

 
Moreover, it can assume,      

 𝜙𝜙𝑓𝑓1 = Ζ𝑓𝑓1
24

𝑛𝑛5𝜋𝜋5
(1+(−1)𝑛𝑛+1)− 2

𝑛𝑛3𝜋𝜋3
(1+(−1)𝑛𝑛+1)

  (18) 

 𝜙𝜙𝑓𝑓2 = Ζ𝑓𝑓2
24

𝑛𝑛5𝜋𝜋5
(1+(−1)𝑛𝑛+1)− 2

𝑛𝑛3𝜋𝜋3
(1+(−1)𝑛𝑛+1)

  (19) 

 ∴  Λ(𝑠𝑠) =

−𝐺𝐺𝑠𝑠 cos𝜃𝜃 1(ℱ)
24

𝑛𝑛5𝜋𝜋5
�1+(−1)𝑛𝑛+1�− 2

𝑛𝑛3𝜋𝜋3
�1+(−1)𝑛𝑛+1�

�𝑠𝑠2+𝜙𝜙𝑓𝑓1𝑠𝑠+𝜙𝜙𝑓𝑓
2�

  (20) 
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By applying the Fourier-Laplace inversion, the dynamic response for inclined, fixed supported pipe conveying fluid can be 
obtained: 

 𝜙𝜙�𝜁𝜁, 𝑡𝑡� = Γ( 𝜁𝜁) −𝐺𝐺 cos𝜃𝜃𝐹𝐹𝑓𝑓(𝑡𝑡) 
24

𝑛𝑛4𝜋𝜋4
− 2
𝑛𝑛2𝜋𝜋2

  (21) 

 𝐹𝐹𝑓𝑓�𝑡𝑡� = � 1
𝛼𝛼𝑓𝑓1𝛼𝛼𝑓𝑓2

+ 1
𝛼𝛼𝑓𝑓1𝛼𝛼𝑓𝑓2�𝛼𝛼𝑓𝑓2−𝛼𝛼𝑓𝑓1�

�𝛼𝛼𝑓𝑓1𝑒𝑒−𝛼𝛼𝑓𝑓2𝑡𝑡 − 𝛼𝛼𝑓𝑓2𝑒𝑒−𝛼𝛼𝑓𝑓1𝑡𝑡��  (22) 

 𝛼𝛼𝑓𝑓1 = 𝜙𝜙𝑓𝑓1
2

+ 𝑖𝑖�𝜙𝜙𝑓𝑓2 −
𝜙𝜙𝑓𝑓1

2

4
 ,𝛼𝛼𝑓𝑓2 = 𝜙𝜙𝑓𝑓1

2
− 𝑖𝑖�𝜙𝜙𝑓𝑓2 −

𝜙𝜙𝑓𝑓1
2

4
   (23) 

3. Results and discussion 
In this section, the results of the analytic solution of the equation of motion of the pipe-fluid system were described. The 

main characteristics of the pipe and fluid and the numeric parameters considered in the current work are shown in Table 1 and 
all results were simulated in MATLAB 2019b software. 

Table 1: Numeric values of used parameter 

Specification Unit Value 

Material ــــــ PPR 
Fluid ــــــ Water 
Outer diameter Do  m 0.025 
Thickness t  m 0.0035 
Aspect ratio (length to outer dimeter) L/Do (50 - 20) ــــــ Do 

Modulus of elasticity E  GPa 
0.8 at 25oC 
0.38 at 50oC 
0.23 at 70oC 

Density of pipe ρp  Kg/m3 909 
Density of fluid ρf Kg/m3 1000 
Coefficient of expansion α  1/K 0.3x10-4 

 
For a good understanding of the overall vibration characteristics of a fixed supported pipe conveying fluid, some 

geometrical and systematic parameters in respect to dynamic deflection were studied.  For this purpose, the lateral deflection of 
the fixed supported pipe conveying fluid within the entire span scope was plotted under different aspect ratios with setting 𝜐𝜐 
=1, t =0.2, T=25, θ=0, n=1 as illustrated in Figure 2. Along with the span of the pipe, the amplitude of lateral displacement of 
the fixed supported pipe conveying fluid changed constantly; the lateral dynamic displacement showed asymmetric distribution 
relative to the mid-span position and had only one extreme value at the mid-span. With increasing the aspect ratio, the 
amplitude of lateral displacement becomes larger. This may be attributed to weak pipe stiffness at a higher aspect ratio due to 
an increase in pipe weight. The same behavior was observed in Ref. [20] with a simply supported pipe. However, the dynamic 
deflection for the fixed supported pipe was significantly smaller as compared with that of the simply supported pipe. This is 
because the lateral deflection of the pipe develops with the increase of the total number of degrees of freedom at the ends. 

 
Figure 2: the dynamic response variation vs. span of the pipe for various aspect ratios 
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The effect of aspect ratio on dynamic response was further investigated by plotting the dynamic deflection against the 
aspect ratio at different fluid velocities, as shown in Figure 3. It can be observed that the increase of the fluid velocity value 
strongly affected the amplitude of dynamic deflection as the aspect ratio increased. With smaller values of the fluid velocity, 
dynamic deflection grew gradually to maximum values with increasing aspect ratio while further increase in fluid velocity 
leads to a more dramatic increase in the amplitude of dynamic deflection. This suggests that the pipe for the same fluid 
velocity will fail quicker with a higher aspect ratio. For further examination; the dynamic deflection response for the fixed 
supported pipe was plotted against the non-dimensional position under a different fluid velocity as shown in Figure 4. It can be 
seen from the figure, that the dynamic deflection increases and then decreases and return increases with increasing fluid 
velocity, i.e. the pipe fluctuates between the max peak deflection at mid-span of the pipe length and the un-deformed case, and 
this behavior was cyclically repeated. With each cycle, it was found that the amplitude of deflection increased with keep 
increasing in the fluid velocity and approaching their critical value. R. S. Reddy et al. [21] found similar observations in their 
research with simple support functionally graded pipe conveying pulsatile fluid. This indicates that when the fluid velocity 
converges the critical value the amplitude of dynamic response will undergo abrupt increasing which lead to static divergence 
instability. This confirms that the effective stiffness of the pipe is lost as the fluid velocity increases. 

 

 
 

Figure 3: The dynamic response variation vs. 
aspect ratio for various fluid velocities 

Figure 4: The dynamic response variation vs. non-
dimensional position for various fluid velocities 

 
The effect of the pipe’s inclination angle on the dynamic deflection response is studied by plotting in Figure 5 the dynamic 

deflection with non-dimension position normalized by various inclination angles. It can be noted from Fig. 5 that for the angles 
between 0° to < 90o, as the inclination angle is increased the dynamic deflection of the pipe significantly decreases for constant 
temperature, aspect ratio, and fluid velocity. The maximum deflection decreases by 51.7% if the beam has an angle θ= 60° 
when compared to its horizontal beam (θ= 0°) counterpart. This is associated with the lowering in the magnitude of the lateral 
weight component with increasing the pipe’s inclination angle, where the maximum deflection is proportional to the lateral 
weight component. On the other hand, at an inclination angle between > 90o to 180o the inclined pipe starts to exhibit 
characteristic behavior inverse to those of an inclined pipe with angles < 90o where the dynamic deflection increases as the 
inclination angle are increased due to the increased lateral load component with rising pipe inclination above θ=90°. The same 
trend was observed by Refs. [22-24] with inclined beam subjected to a moving load. 

We further examine the effect of inclination angle by plotting in Figure 6 variation of the peak mid-span of dynamic 
deflection of the pipe with the inclination angles θ for different temperatures. We observe from Figure 6 that an increase in the 
inclination angle results in a decrease in the mid-span dynamic deflection of the fixed supported pipe and turn slightly reducing 
the harmful effect of increasing the temperature on the dynamic deflection of the fixed supported pipe. This decrease in 
dynamic deflection is very apparent in larger inclination angle more than at the lower inclination angle which can lead to 
enhancing the pipe-fluid system stability against the environment involving higher temperature variation. Figure 7 shows the 
relationship between the peak deflection of mid-span of the pipe and aspect ratio under three temperatures of the pipe, 25 
(room temperature), 50, and 75, for the fixed supported pipe-fluid system. As shown in Figure 7, the peak deflection of the 
mid-span clearly showed dramatic increases at the highest aspect ratio with increasing pipe temperature. These suggest that 
there is a strong coupling between the temperature variation and aspect ratio of the pipe-fluid system. The reason is that the 
differences in the stiffness of the pipe are large with increasing the temperature and aspect ratio, the flexural rigidity of the pipe 
at temperature and aspect ratio of 75oC and 50 respectively is much smaller than that of the pipe at room temperature and 
aspect ratio of 20. Additionally, the bending resistance of the pipe at room temperature and lower aspect ratio plays a leading 
role in the bending resistance of the entire system. 
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Figure 5: the dynamic response variation vs. non-dimensional position for various inclination 

angles 

  
Figure 6: variation of the peak mid-span of dynamic 

deflection of the pipe with the inclination angles θ 
for different temperatures 

Figure 7: The maximum lateral displacement of the 
middle point of clamped-clamped pipe conveying 
fluid versus aspect ratios at different temperatures 

 
Figure 8 illustrates the maximum lateral displacement of the middle point of clamped-clamped pipe conveying fluid versus 

fluid velocity at different times. With the increase in time, the influence of fluid velocity on the dynamic deflection for fixed 
supported pipe conveying fluid illustrates a nonlinear relationship (sine curve). The maximum lateral displacement of the 
middle point of the clamped-clamped pipe exhibits the variation of the sine curve. Besides, the amplitude of the sine curve 
increased while its period decreased with the increase of time. The results reveal that the oscillation of the pipe’s middle point 
maximum lateral displacement increased significantly when the time and fluid velocity are increased. Moreover, the results 
showed that the middle point lateral displacement for the fixed supported pipe reaches the extreme value with the converging 
of critical velocity. 
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Figure 8: The maximum lateral displacement of the middle point of clamped-clamped pipe 

conveying fluid versus fluid velocity at different times 

4. Conclusion 
It can summarize our finding from the current study as follow: 

 The analytical method proposed in the current study has a clear concept, suitable for hand computation, 
and gives a theoretical basis for more engineering applications of inclined, fixed supported pipe 
conveying fluid under thermal loads. 

 The aspect ratio temperature variation and inclination angle strongly affected both the dynamic 
responses of the system. 

 There is a strong coupling between the aspect ratio of pipe length to its outside diameter with 
temperature variation and inclination angle. 

 The temperature variation is a major concern rather than the internal fluid velocity in the design of pipe 
containing flowing fluid at a higher aspect ratio. 

 Inclination angle has a larger impact on vibration characteristics at a higher aspect ratio, which should 
be paid attention to in engineering. 

 Dynamic deflection increase with increasing temperature. The divergence can be occurring even the 
fluid velocity equals zero with the increasing temperature of the pipe. 

 Dynamic deflection increase with increasing the aspect ratio. 
 By increasing the pipe’s inclination angle, the dynamic lateral displacement of the mid-point of the pipe 

decreases, and for example, at θ= 90o, it becomes zero. 
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