Document Type : Research Paper


1 Laser and Optoelectronics Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 University of technology/ department of Laser and Optoelectronics Engineering

3 Laser and Optoelectronics Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq


In this study, thin films of pure iron oxide (Fe3O4) were prepared using pulsed
laser deposition technique under vacuum (2×10-3 mbar) using Nd: YAG laser at
different laser energies (700, 800, 900, and 1000 mJ) on quartz slides at the
substrate temperature of 200 °C with different thickness (170,190, 220, and 250
nm). The prepared thin films were examined using different techniques. The Xray diffraction showed a polycrystalline structure of cubic Fe3O4 phase, enhanced
its crystallinity, and increased the crystalline size when increasing the laser energy
to 1000 mJ. The results revealed that high transparency samples decreased pulse
laser energy. As the laser pulse power increases, the transparency decreases from
91% to 61%, where optical properties deteriorate significantly. The bandgap
values were detected to be 3.9 eV, 3.75 eV, 3.21 eV, and 3 eV when the laser
energies were increased with thickness (170– 250) nm. In addition, the extinction
coefficient, dielectric constants, optical constants, and refractive constants were

Graphical Abstract


  • The XRD results indicated that Fe3O4 had acubic spinel structure because of the strongest reflection from 311 planes.
  • Increasing the pulse laser energy reduces the energy gap of films. 
  • energy gap of films.
  • When the pulses laser energy increases,the absorption and the film''s
    thickness increa
    the absorption and the film''sthickness increase


[1] X. Wang, Y. Liao, D. Zhang, T. Wen, and Z. Zhong, A review of Fe3O4 thin films: Synthesis, modification and applications, Journal of Materials Science & Technology, 34 (2018) 1259–1272, doi: 10.1016/j.jmst.2018.01.011.
[2] R. Suresh, K. Giribabu, R. Manigandan, L. Vijayalakshmi, A. Stephen, and V. Narayanan, Electrochemical sensing property of Mn doped Fe[sub 3]O[sub 4] nanoparticles, AIP Conf. Proc, 1512 (2013) 402–403, doi: 10.1063/1.4791081.
[3] J. Mohapatra, A. Mitra, D. Bahadur, and M. Aslam, Surface controlled magnetic properties of Fe3O4 nanoparticles, AIP Conference Proceedings, 1512 (2013), doi: 10.1063/1.4791039.
[4] ABC, Ekwealor and Ezema, Fabian, Effects of precursor concentration on the optical and structural properties of Fe2O3 thin films synthesized in a polymer matrix by chemical bath deposition, Journal of Ovonic Research, 9 (2013) 35–43.
[5] R. Master, D. M. Phase, R. J. Choudhary, U. P. Deshpande, and T. Shripathi, Fourier transform infrared study of pulsed laser deposited Fe3O4 thin films grown on different substrates, AIP Conference Proceedings, 1512 (2013) 724. doi: 10.1063/1.4791242.
[6] D. Chen, S. Xiong, S. Ran, B. Liu, L. Wang, and G. Shen, One-dimensional iron oxides nanostructures, Science China Physics, Mechanics and Astronomy, 54 (2011) 1190–1199. doi: 10.1007/s11433-011-4372-3.
[7] A. Roychowdhury, S. P. Pati, S. Kumar, and D. Das, Magnetic-fluorescent nanocomposite: A case study on Fe3O4/ZnS, AIP Conference Proceedings, 1512 (2013) 246, 2013. doi: 10.1063/1.4791003.
[8] N. J. Tang, W. Zhong, H. Y. Jiang, X. L. Wu, W. Liu, and Y. W. Du, Nanostructured magnetite (Fe3O4) thin films prepared by sol–gel method, Journal of Magnetism and Magnetic Materials, 282 (2004) 92–95. doi: 10.1016/j.jmmm.2004.04.022.
[9] N. Yulfriska, D. Rianto, F. Murti, Y. Darvina, and R. Ramli, Optical Properties of Fe3O4Thin Films Prepared from the Iron Sand by Spin Coating Method, IOP Conference Series: Materials Science and Engineering, (2018) 012010. doi: 10.1088/1757-899x/335/1/012010.
[10] X. Huang, J. Ding, The structure, magnetic and transport properties of Fe3O4 thin films on different substrates by pulsed laser deposition, J. Korean Phys. Soc. 62 (2013) 2228–2232.
[11] W. H. Bragg and W. L. Bragg, X-rays and Crystal Structure (G. Bell and sons, Limited, 1918).
[12] E. M. Nasir, Thickness and gamma-ray effect on physical properties of CdO thin films grown by pulsed laser deposition, Iraqi Journal of Physics (IJP), 14 (2019) 90–100, doi: 10.30723/ijp.v14i29.225.
[13] R. Jabbar, S. H. Sabeh, and A. M. Hammed, Synthesis and Characterization of CoFe2O4 Nanoparticles Prepared by Sol-Gel Method, Engineering and Technology Journal, 38 (2020)  47–53, doi: 10.30684/etj.v38i2b.252.
[14] A. D. Faisal, M. A. Jaleel, and F. Z. Kamal, Ethanol Gas Sensor Fabrication Based on ZnO Flower Like Nanorods, Engineering and Technology Journal, 38 (2020) 85–97, doi: 10.30684/etj.v38i3b.279.
[15] U. Jadhav, S. Gosavi, S. Patel, and R. Patil, Archives of Physics Research, 2, 27-35 (2011).
[16] A. I. Khudiar and A. M. Ofui, Effect of pulsed laser deposition on the physical properties of ZnO nanocrystalline gas sensors, Optical Materials, 115 (2021) 111010, doi: 10.1016/j.optmat.2021.111010.
[17] S. R. Elliott, Physics of amorphous materials. London; New York: Longman, (1984).
[18] Suad M. Kadhim, Synthesis and Characteristic Study of Nanostructured (PbS/n-Si) by Chemical Bath Deposition, The Degree of Doctor of Philosophy (ph.D) in Applied Physics, Departments of Applied Science - University of technology, (2013).
[19] A.D. Faisal, M.A. Jaleel, and F.Z. Kamal, Synthesis of ZnO Nanorods on Silicon for Methanol Gas Sensor, Eng. Technol.  J. , 37 (2019), doi: 10.30684/etj.37.3B.2.
[20] A. Abdulkhaleq Alwahib, S. Fawzi Alhasan, M. H. Yaacob, H. N. Lim, and M. Adzir Mahdi, Surface plasmon resonance sensor based on D-shaped optical fiber using fiberbench rotating wave plate for sensing pb ions, Optik, 202 (2020)  163724, doi: 10.1016/j.ijleo.2019.163724.
[21] Z. M. AL-Asady and A. H. AL-Hamdani, Diffraction Rings Pattern and Nonlinear Optical Properties of Hybrid ZnO-NPs / Epoxy Resin, Eng. Technol.  J. , 38 (2020)  440–445, doi: 10.30684/etj.v38i3a.549.
[22] E. Nasir, H. Al-Lamy, and H. Abdul-Ameer, OPTICAL PROPERTIES OF CdSe FILMS AT DIFFERENT THICKNESS AND ANNEALING TEMPERATURES, Chalcogenide Letters, 16 (2019) 485–497.
[23] R. J. Elliott and A. F. Gibson, An introduction to solid state physics and its applications. Macmillan: London, (1974).
[24] D. Ciplys, R. Rimeika, I. Suarez, G. Lifante, M. S. Shur, and A. Aulas, Guided-wave acousto-optic diffraction in Zn: LiNbO3, Electronics Letters, 42 (2006) 1294. doi: 10.1049/el:20061705.
[25] V. Kumar, S. Kr. Sharma, T. P. Sharma, and V. Singh, Band gap determination in thick films from reflectance measurements, Optical Materials, 12 (1999) 115–119. doi: 10.1016/s0925-3467(98)00052-4.
[26] M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglu, Electrical conductivity and optical properties of ZnO nanostructured thin film, Applied Surface Science, 255 (2009) 4491–4496. doi: 10.1016/j.apsusc.2008.11.055.
[27] M.D. Femi, A. Ohwofosirai, A. Sunday, O.S. Ezema, R.U. Osuji, Variation of the optical conductivity dielectric function and the energy bandgap of CdO using cadmium acetate dehydrate, Int. J. Adv. Electric. Electron. Eng. 2 (2014) 331– 337
[28] Shams B. Ali, Deposition of lead sulfide (PbS) film and study of some of its physical properties, M.SC thesis in laser physics, Departments of Applied Science - University of technology, ( 2007 ).
[29] V. I. Klimov, Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals, Annual Review of Physical Chemistry, 58 (2007) 635–673. doi: 10.1146/annurev.physchem.58.032806.104537.
[30] P. M. Kouotou, A. E. Kasmi, L.-N. Wu, M. Waqas, and Z.-Y. Tian, Particle size-band gap energy-catalytic properties relationship of PSE-CVD-derived Fe3O4 thin films, Journal of the Taiwan Institute of Chemical Engineers, 93 (2018) 427–435. doi: 10.1016/j.jtice.2018.08.014.