Document Type : Research Paper


1 Laser and Optoelectronic Engineering Dept., University of Technology-Iraq, 10066 Baghdad, Iraq

2 Laser and Optoelectronics Engineering Department- University of Technology-Iraq-Baghdad


GaN nanostructure was Synthesized using Pulsed laser ablation in liquid ethanol with Nd:YAG laser at pulsed laser ablation energy of 1600 mj and laser wavelength of 1064 nm. The nanoparticle was deposited using the drop cast method on the prepared porous silicon substrate. The structural and optical properties of the prepared GaN were studied. XRD pattern shows a high and sharp peak of pSi peak at 2θ =28.74 reflected from (111) plane and exhibits h-GaN rise at 2θ =34.54, 2θ =37.49, 2θ= 48.19 and 2θ=57.99 which are reflected from (002), (100), (102), (110) planes respectively where (002) plane has the highest peak than others. AFM and FESM proved an increase in the grain size of GaN. The reflectance of GaN (81.79%) at the wavelength (306nm) and has an energy band gap of (3.9eV).

Graphical Abstract


  • High-quality GaN nanofilm was prepared by pulsed laser ablation in ethanol.
  •  A new, thin, layer-by-layer preparation factor of GaN nanofilm was used.
  • The structural properties showed a high and sharp peaks of the hexagonal GaN nanostructure and identical to the conventional structure of the GaN crystal.
  •  The optical properties showed an increase in the reflectivity of the gallium nanoparticles in the UV recovery.
  •  The increase in the optical bandgap energy showed a blueshift related to the size of the GaN nanoparticles grown on a porous silicon substrate.


[1] R. S. Devan, R. A. Patil, J. Lin, and Y. Ma, One‐dimensional metal‐oxide nanostructures: recent developments in synthesis, characterization, and applications, Adv. Funct. Mater. 22 (2012) 3326–3370.
[2] N. K. Hassan and M. R. Hashim, Flake-like ZnO nanostructures density for improved absorption using electrochemical deposition in UV detection, J. Alloys Compd., 577 (2013) 491–497.
[3] K. M. A. Saron, M. R. Hashim, M. A. Qaeed, K. Al-heuseen, and N. G. Elf dill, The excellent spontaneous ultraviolet emission of GaN nanostructures grown on silicon substrates by thermal vapor deposition, Mater. Sci. Semicond. Process. 29 (2015) 106–111.
[4] L. Pang and K. K. Kim, Improvement of Ohmic contacts to n-type GaN using a Ti/Al multi-layered contact scheme, Mater. Sci. Semicond. Process. 29 (2015) 90–94.
[5] M. Z. B. M. Yusoff, Z. Hassan, N. Alrawi, H. A. Hassan, M. J. Abdullah, M. Rashid, Pn-Junction photodiode based on GaN grown on Si (111) by plasma-assisted molecular beam epitaxial, Mater. Sci. Semicond. Process. 16 (2013) 1859–1864.
[6] M. A. QaeedK. IbrahimK. M. A. SaronM. S. MukhlifA. IsmailN. G. ElfadillK.  M. ChahrourQ. N. AbdullahK. S. A. Aldroobi., New issue of GaN nanoparticles solar cell, Curr. Appl. Phys., 15 (2015) 499–503.
[7] M. Miyoshi, T. Tsutsumi, T. Kabata, T. Mori, and T. Agawam, Effect of well layer thickness on quantum and energy conversion efficiencies for InGaN/GaN multiple quantum well solar cells, Solid. State. Electron. 129 (2017) 29–34.
[8] Y. Dong, D. Son, Q. Dai, J. Lee, C. Won, J. Kim, S. Kang, J. Lee, D. Chen, H. Lu, R. Zhang, Y. Zheng, AlGaN/GaN heterostructure pH sensor with multi-sensing segments, Sensors Actuators B Chem., 260 (2018) 134–139.
[9] A. Mantarc, Structural, Morphological, and Optical Characterization of GaN/p-Si Thin Films for Various Argon Flow Rates, JOM, 72 (2020) 552–560.
[10] E. Martinez-GuerreroC. AdelmannF. ChabuelJ. SimonN. T. PelekanosGuido MulaB. DaudinG. Feuillet, and H. Mariette, Self-assembled zinc blende GaN quantum dots grown by molecular-beam epitaxial, Appl. Phys. Let., 77 (2000) 809–811.
[11] J.-M. Lee, B.-G. Min, C.-W. Ju, H.-K. Ahn, and J.-W. Lim, High temperature storage test and its effect on the thermal stability and electrical characteristics of AlGaN/GaN high electron mobility transistors, Curr. Appl. Phys., 17 (2017) 157–161.
[12] M. R. Khan, J. R. Smith, R. P. Tompkins, S. Kelley, M. Litz, J. Russo, J. Leathersich, F. Shahedipour-Sandvik, K. A. Jones, A. Iliadis, Design and characterization of GaN pin diodes for betavoltaic devices, Solid. State. Electron. 136 (2017) 24–29.
[13] C. Saidi, N. Chaaben, A. Bchetnia, A. Fouzri, N. Sakly, and B. El Jani, Growth of scandium doped GaN by MOVPE, Super lattices Microstructure., 60 (2013) 120–128.
[14] Y. S. Park, T. W. Kang, and R. A. Taylor, Abnormal photoluminescence properties of GaN nanorods grown on Si (111) by molecular-beam epistaxis, Nanotechnology, 19 (2008) 475402.
[15] S. Xue, X. Zhang, R. Huang, D. Tian, H. Zhuang, and C. Xue, A simple method for the growth of high-quality GaN Nano belts, Mater. Letts. 62 (2008) 2743–2745.
[16] K. M. A. Saron and M. R. Hashim, Broad visible emission from GaN nanowires grown on n-Si (1 1 1) substrate by PVD for solar cell application, Superlattices Microstructure., 56 (2013) 55–63.
[17] Q. N. Abdullah, F. K. Yam, J. J. Hassan, C. W. Chin, Z. Hassan, and M. Bououdina, High performance room temperature GaN-nanowires hydrogen gas sensor fabricated by chemical vapor deposition (CVD) technique, Int. J. Hydrogen Energy, 38 (2013) 14085–14101.
[18] A. Podhorodecki, M. Nyk, R. Kudrawiec, J. Misiewicz, J. C. Pivin, and W. Streak, Optical properties of GaN nanocrystals embedded into silica matrices, Superlattices Microstructure., 40 (2006) 533–536, 2006.
[19] K. Al-Heuseen, M. R. Hashim, and N. K. Ali, Synthesis of hexagonal and cubic GaN thin film on Si (111) using a low-cost electrochemical deposition technique, Mater. Letts. 64 (2010) 1604–1606.
[20] M. A. Qaeed, K. Ibrahim, K. M. A. Saron, and A. Salhin, Cubic and hexagonal GaN nanoparticles synthesized at low temperature, Super lattices Microstructure. 64 (2013) 70–77.
[21] M. Kawwam and K. Lebbou, The influence of deposition parameters on the structural quality of PLD-grown GaN/sapphire thin films, Appl. Surf. Sci., 292 (2014) 906–914.
[22] H. H. Lee, M. Bae, Su. Jo, J. Shin, D. H. Son, C. Won, J. Lee, Differential-mode HEMT-based biosensor for real-time and label-free detection of C-reactive protein, Sensors and Actuators B: Chemical,  234 (2016) 316-323.
[23] M. A. Fakhery, Study the properties of silicon nanocrystallites prepared by wet etching, Eng. Technol. J., 28 (2010) 301-306.
[24] E. T. Al Waisy, M. S. Al Wazny, Responsively, rise time for Bi2O3 /Si photo detector, Eng. Technol. J., 32 (2014) 33-38.
[25] M. A. Fakhery, K. S. khashan , E. T. Salem, Enhanced the response time of the P-N junction Photodetector, Eng. Technol. J., 26 (2008) 423-428.
[26] M. S. MohammedR. O. MahdiE. T. Salim, Effect of different oxidation temperature on nano and micro TCO’s thin film, Eng. Technol. J., 32 (2014)  7-14.
[27] M. A Fakhry, F. A. Hattab, E. K. Hamed, Laser energy effects on optical properties of titanium di-oxide prepared by reactive pulsed laser deposition, Eng. Technol. J., 30 (2012) 3104-3111.
[28] E. T. Salim, H. H. Rashed, Laser pulses effect on the structural and optical properties of ZnO nano particles prepared by laser ablation in water, Eng. Technol. J., 32 (2014) 198-208.