Authors

1 Al-Amarah University College, Department of Petroleum Engineering, Maysan, Iraq

2 Chemical Engineering Dept.,University of Technology-Iraq, Alsina’a Street, 10066 Baghdad, Iraq.

3 Chemical Engineering Dept.,University of Technology-Iraq, Alsina‟a Street, 10066 Baghdad, Iraq.

Abstract

This study aims to shed light on natural gas as an important and promising energy source. This energy source is the fastest-growing source in the world due to the increasing global demand. In this paper, the rates of growth in global demand for natural gas according to the latest reports since 1984, as well as the gas specifications required for transport and storage, acid gases, including absorption, desorption, Cryogenic and separation by membranes, are discussed with the advantages and disadvantages of each method. Focusing are presented. In addition to the primary treatment processes that take place on the gas, the most important of which is the removal of acid gases. Processes for removing on the membrane separation process as the most promising process in this field and reviewing all the research that is discussed in details of this process.

Graphical Abstract

Highlights

  • A comprehensive comparison of CO2 capture technology.
  • Applications of membrane in gas separation.
  • Models for a binary gas mixture.
  • Industrial aspect of acid gas removal from natural gas by membranes.

Keywords

Main Subjects

[1] M. Mesbah, M. Momeni, E. Soroush, S. Shahsavari, and S. A. Galledari, Theoretical study of CO2 separation from CO2/CH4 gaseous mixture using 2-methyl piperazine -promoted potassium carbonate through hollow fiber membrane contactor. J. Environ. Chem. Eng., 7 (2019) 102781. DOI: 10.1016/j.jece.2018.11.026.
[2] Energy Information Administration, International Energy Outlook,Outlook;0484 (2019) 70–99.DOI: https://www.eia.gov/outlooks/ieo/pdf/ieo 2019.pdf.
[3] Spencer D.,BP Statistical Review of World Energy Statistical Review of World; 2019.
[4] N. Ghasem and M. Al-Marzouqi, Modeling and experimental study of carbon dioxide absorption in a flat sheet membrane contactor. J. Membr. Sci. Res., 3, 2016, 57–63.DOI: 10.22079/jmsr.2016.20226.
[5] Mokhatab, S.,William, A. P., and James, G. S. Handbook of Natural Gas Transmission and Processing; Third Edit. United States of America: Elsevier Inc., 2006.
[6] A. M. Mamoun, Althuluth Geboren, Natural Gas Sweetening Using Ionic Liquids;the Eindhoven University of Technology, The Netherlands, 2014.
[7] R. W. Baker and K. Lokhandwala, Natural Gas Processing with Membranes: An Overview,Ind. Eng. Chem. Res, 47 (2008) 2109–2121, DOI: doi.org/10.1021/ie071083w.
[8] Wang, X. and Economides,M. Advanced natural gas engineering; Houston, Texas: Gulf Publishing Company Houston, 2013.
[9] Kidnay, W. R., Arthur, J & Parrish. Fundamentals of Natural Gas Processing; Boca Raton London New York CRC, 2006.
[10] Z. Y. Yeo, T. L. Chew, P. W. Zhu, A. R. Mohamed, and S. P. Chai, Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review, Journal of Natural Gas Chemistry, 21 (2012) 282–298, DOI: 10.1016/S1003-9953(11) 60366-6.
[11] G. Clarizia, Polymer-based membranes applied to gas separation: material and engineering aspects; Desalination,  245 (2009) 763–768, DOI: 10.1016/j.desal.2009.02.049.
[12] K. Dalane, Z. Dai, G. Mogseth, M. Hillestad, and L. Deng, Potential applications of membrane separation for subsea natural gas processing: A review,Journal of Natural Gas Science and Engineering, 39 (2017) 101–117,doi: 10.1016/j.jngse.2017.01.023.
[13] G. George, N. Bhoria, S. Alhallaq, A. Abdala, and V. Mittal, Polymer membranes for acid gas removal from natural gas,Separation and Purification Technology,158 (2016) 333–356, DOI: 10.1016/j.seppur.2015.12.033.
[14] S. K. Gebremariam, Modelling a Membrane Contactor for CO2 Capture;Norwegian University of Science and Technology, 2017.
[15] Cui, Z. Carbon Dioxide Absorption into Aqueous Ammonia in A Hollow Fiber Membrane Contactor A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Industrial Systems,University of Regina, 2016.
[16] B. Shimekit, and Mukhtar, H. Natural Gas Purification Technologies - Major Advance for CO2 Separation and Future Directions; in Advances in Natural Gas Technology, Dr Hamid Al-Megren, Ed. InTech Published, 2012.
[17] C. H. Yu, C. H. Huang, and C. S. Tan, A review of CO2 capture by absorption and adsorption, Aerosol Air Qual. Res., 12 (2012) 745–769, DOI: 10.4209/aaqr.2012.05.0132.
[18] N. O. Ghaffari, Novel Functionalized Fillers for Mixed Matrix Membranes for C02/Ch4 Separation;Université Laval, 2012.
[19] R. T. Adams, High Molecular Sieve Loading Mixed Matrix Membranes for Gas Separations;Georiga Institute of Technology, 2010.
[20] Omole, I. Crosslinked polyimide hollow fiber membranes for aggressive natural gas feed streams;Georgia Institute of Technology, 2008.
[21] M. Younas, M. Sohail, L. L. Kong, M. J. K. Bashir, and S. Sethupathi, Feasibility of CO2adsorption by solid adsorbents: a review on low-temperature systems,Int. J. Environ. Sci. Technol.,13 (2016) 1839–1860, DOI: 10.1007/s13762-016-1008-1.
[22] R. Ben-Mansour et al., Carbon capture by physical adsorption: Materials, experimental investigations and numerical modelling and simulations - A review, Appl. Energy,161 (2016) 225–255, DOI: 10.1016/j.apenergy.2015.10.011.
[23] S. D. Kenarsari et al., Review of recent advances in carbon dioxide separation and capture,RSC Adv., 3 (2013) 22739–22773, DOI: 10.1039/c3ra43965h.
[24] H. Y. Huang, R. T. Yang, D. Chinn, and C. L. Munson, Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas, Ind. Eng. Chem. Res., 42 (2003) 2427–2433, DOI: 10.1021/ie020440u.
[25]  Zou, X., and Zhu, G. CO 2 Capture with MOF Membranes, in Microporous Materials for Separation Membranes, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 323–359, 2019.
[26] An, J.A., Ritter,A. D. E. Carbon Dioxide Separation Technology: R&D Needs For the Chemical and Petrochemical Industries; Approv. Issued by Chem. Ind. Vision2020 Technol. Partnersh., 147, 2007.
[27] N. Zhang et al., CO2 capture from coalbed methane using membranes: a review, Environ. Chem. Lett., 18(2020)9–96, DOI: 10.1007/s10311-019-00919-4.
[28] A. Sabljic, Environmental and Ecological Chemistry ;I - Google Books. 2009.
[29] R. W. Baker, Membrane Technology and Applications, 2nd Editio. Chichester, UK: John Wiley & Sons, Ltd, 2012.
[30] T. C. Zhang, Surampalli, R. Y., Vigneswaran, S., Ong, S. L., and Kao, C. M. Membrane Technology and Environmental Applications;Tian C. Zh. American Society of Civil Engineers, 2012.
[31] K. Mohanty and M. K. Purkait,. Membrane Technologies and Applications; 1st Editio. CRC Press, 2011.
[32] W. Rongwong, R. Jiraratananon, and S. Atchariyawut, Experimental study on membrane wetting in gas-liquid membrane contracting process for CO2 absorption by single and mixed absorbents, Sep. Purif. Technol., 69 (2009) 118–125, DOI: 10.1016/j.seppur.2009.07.009.
[33] P. Bernardo, E. Drioli, and G. Golemme, Membrane Gas Separation: A Review/State of the Art, Ind. Eng. Chem. Res., 48 (2009) 4638–4663, doi: 10.1021/ie8019032.
[34] Enrico Drioli, F. M. Lidietta Giorno, Membrane Engineering; Google Books, First Edit. Walter de Gruyter GmbH & Co KG, 2018.
[35] T. M. Ahmad Fauzi Ismail, Kailash Chandra Khulbe, Gas Separation Membranes: Polymeric and Inorganic - Google Books. Switzerland, 2015.
[36] Noble, R., and Alexander, S. S., Membrane Separations Technology Principles and Applications, 4,  Amsterdam;The Netherlands: Elsevier, 1989.
[37] H. Julian, Polysulfone membranes for CO2/CH4 separation: State of the art,IOSR J. Eng., 02 (2012) 484–495, DOI: 10.9790/3021-0203484495.
[38] M. A. Abd. Hamid, Y. T. Chung, R. Rohani, and M. U. Mohd. Junaidi, Miscible-blend polysulfone/polyimide membrane for hydrogen purification from palm oil mill effluent fermentation,Sep. Purif. Technol., 209 (2019) 598–607, DOI: 10.1016/j.seppur.2018.07.067.
[39] Brunetti, A., Bernardo, P., Drioli, E., and Barbieri, G., Membrane Gas Separation;39,5. Chichester, UK: John Wiley & Sons, Ltd, 2010.
[40] Scholz, M.,Wessling, M., and Balster, J., Chapter 5. Design of Membrane Modules for Gas Separations;1, 2011,125–149.
[41] E. Fi. Yuri Yampolski, Membrane Materials for Gas and Separation: Synthesis and Application fo ... - Google Books. pondicherry, India: John Wiley & Sons, Ltd, 2017.
[42] A. K. Alshehri, Membrane Modeling. Simulation and Optimization for Propylene/Propane Separation,” Dissertation by Ali K. Alshehri In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy King Abdullah University of Science and Technology, 2015.
[43] J. Caro, Basic Principles of Membrane Technology, Zeitschrift für Phys. Chemie, 203 (1998) 263–263, DOI: 10.1524/zpch.1998.203.Part_1_2.263.
[44] Enrico Drioli,G.B. Membrane Engineering for the Treatment of Gases; Gas-Separation Problems ... - Google Books. Royal Society of Chemistry, 2011.
[45] J. A. Dehkordi, S. S. Hosseini, P. K. Kundu, and N. R. Tan, Mathematical Modeling of Natural Gas Separation Using Hollow Fiber Membrane Modules by Application of Finite Element Method through Statistical Analysis,Chem. Prod. Process Model., 11 (2016) 11–15 DOI: 10.1515/cppm-2015-0052.
[46] J. I. Marriott,J.I. Detailed modelling and optimal design of membrane separation systems,” PhD Thesis, no. February, 1–224, 2001.
[47] F. Ahmad, K. Lau, and A. Shariff, Modeling and Parametric Study for CO2/CH4 Separation Using Membrane Processes, Int. J. Chem. Mol. Eng., 4 (2010) 766–771,doi: 10.5281/zenodo.1072745.
[48] Kargari, Mathematical Modeling of CO2/CH4 Separation by Hollow Fiber Membrane Module Using Finite Difference Method, J. Member. Sep. Technol., (2012) 19–29, DOI: 10.6000/1929-6037.2012.01.01.3.
[49] A.O. Alsaiari, Gas-gas separation using a hollow fiber membrane;Lehigh University, 2014.
[50] G. Gholami, M. Soleimani, and M. T. Ravanchi, Mathematical modelling of gas separation process with flat carbon membrane, J. Membr. Sci. Res., 1 (2015) 90–95, DOI: 10.22079/jmsr.2015.13537.
[51] M. Ahsan and A. Hussain, Mathematical modelling of membrane gas separation using the finite difference method, Pacific Sci. Rev. A Nat. Sci. Eng., (2016) 47–52, DOI: 10.1016/j.psra.2016.07.001.
[52] S. Qadir, A. Hussain, and M. Ahsan, Numerical Analysis of A Gas Separation of Ch 4 / Co 2 Using Hollow Fiber Membrane Module;36 (2018) 501–510.
[53] A. A. Kozlova, M. M. Trubyanov, A. A. Atlaskin, N. R. Yanbikov, and M. G. Shalygin, “Modeling Membrane Gas and Vapor Separation in the Aspen Plus Environment, Member. Member. Technol., 1 (2019) 1–5, DOI: 10.1134/S2517751619010049.
[54] M. H. Murad Chowdhury, X. Feng, P. Douglas, and E. Croiset, A New Numerical Approach for a Detailed Multicomponent Gas Separation Membrane Model and AspenPlus Simulation, Chem. Eng. Technol.28 (2005) 773–782, DOI: 10.1002/ceat.200500077.
[55] H. Mirzaee and F. Mirzaee, Modeling and simulation gas separation by a membrane of poly dimethyl siloxane, J. King Saud Univ. - Eng. Sci.24 (2012) 35–43.doi: 10.1016/j.jksues.2011.02.001.
[56] S. Deyhim, B. Kruczek, D. Mccalden, and M. Shokrian, Shortcut Methods for Simulating Separation of Multicomponent Gas Mixtures in Membranes, Int. Conf. New trends Transp. Phenom.92 (2014) 2–5.
[57] M. Szwast and Z. Szwast, A Mathematical Model of Membrane Gas Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel,Chem. Process Eng. 36 (2015)151–169. DOI: 10.1515/CPE-2015-0012.
[58] M. Harasek, B. Haddadi, M. Miltner, P. Schretter, and C. Jordan, Fully Resolved CFD Simulation of a Hollow Fibre Membrane Module,Chem. Eng. Trans. 52 (2016) 433–438.DOI: 10.3303/CET1652073.
[59] M. Ahsan and A. Hussain, A numerical modelling of a natural gas using multistage membrane permeation, in Proceedings - 22nd International Congress on Modelling and Simulation, MODSIM (2017) 113–119, DOI: 10.36334/MODSIM.2017.A4.Ahsan.
[60] C. Y. Pan, Gas ٍSeparation by High-Flux, Asymmetric Hollow-Fiber Membrane,AIChE J. 32 (1986) 2020–2027. DOI: 10.1002/aic.690321212.
[61] A. S. Kovvali, S. Vemury, and W. Admassu, Modeling of Multicomponent Countercurrent Gas Permeators,Ind. Eng. Chem. Res. 33 (1994) 896–903. DOI: 10.1021/ie00028a016.
[62] D. T. Coker, B. D. Freeman, and G. K. Fleming, Modeling multicomponent gas separation using hollow-fibre membrane contactors, AIChE J. 44 (1998) 1289–1302. DOI: 10.1002/aic.690440607.
[63] J. Marriott, E. Sørensen, and I. D. Bogle, Detailed mathematical modelling of membrane modules, Comput. Chem. Eng. 25 (2001) 693–700. DOI: 10.1016/S0098-1354 (01) 00670-6.
[64] B. Medi and M. Nomvar, Developing a fast and robust numerical method for the simulation of co-current hollow fiber gas separation membranes for process flowsheet synthesis,SN Appl. Sci., 2 (2020) 426.DOI: 10.1007/s42452-020-2253-y.