Document Type : Research Paper


1 Chemical Engineering Dept, University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

2 Chemical Engineering, Al-Khawarizmi College of Engineering, University of Baghdad.


In this work, the mesoporous silica nanoparticles (MSNs) of type MCM-41 were manufactured and modified with Fe3O4 to load curcumin (CUR) CUR@Fe3O4/MCM-41 as an efficient carrier in drug delivery systems. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FT-IR), and nitrogen adsorption-desorption isotherms were used to characterize the three samples: pure MCM-41, Fe3O4/MCM-41, & CUR@Fe3O4/MCM-41. Adsorption processes tests were carried out to determine the impact of various variables on the CUR load efficiency. These variables were the carrier dosage, pH, contact time, and initial CUR concentration. The maximal drug loading efficiencies (DL %) were 15.78 % and 22.98 %, respectively. According to the data, The Freundlich isotherm had a stronger correlation coefficient R2= 0.999 for MCM-41, while the Langmuir isotherm had a greater R2 of 0.9666 for Fe3O4/MCM-41. A pseudo-second-order kinetic model fits well with R2=0.9827 for MCM-41 and 0.9994 for Fe3O4/MCM-41. Phosphate Buffer Solution (PBS) with a pH of 7.4 was utilized to study CUR release behavior. According to the research, the maximum release for MCM-41 and Fe3O4/MCM-41 might be 74.1 % and 25.19 % after 72 h, respectively. Various kinetic release models were used, including First-order, Korsmeyer-Peppas, Hixson and Crowell, Higuchi, and Weibull. After 72h, the drug release data were fit using a Weibull kinetic model with an R2 of 0.944 and 0.764 for MCM-41 and Fe3O4/MCM-41, respectively.

Graphical Abstract


  • Functionalization of MCM-41 using Fe3O4.
  • Encapsulation of curcumin onto MCM-41, Fe3O4/MCM-41 and their characterization before and after modified and loaded with curcumin.
  • Comparison of release profile of curcumin loaded onto MCM-41 and Fe3O4/MCM-41.
  • Investigation of the release mechanism and release kinetics


Main Subjects

[1]  R. R. Castillo, M. Colilla, and M. Vallet-Regí, “Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer,” Expert Opin. Drug Deliv., vol. 14, no. 2, pp. 229–243, 2017, doi: 10.1080/17425247.2016.1211637.
[2] T. M. Albayati and A. A. A. Jassam, Synthesis and characterization of mesoporous materials as a carrier and release of prednisolone in drug delivery system, J. Drug Deliv. Sci. Technol., 53 (2019) 101176, doi: 10.1016/j.jddst.2019.101176.
[3] L. Slika, A. Moubarak, J. Borjac, E. Baydoun, and D. Patra, "Preparation of curcumin-poly (allyl amine) hydrochloride based nanocapsules: Piperine in nanocapsules accelerates encapsulation and release of curcumin and effectiveness against colon cancer cells'', vol. 109. Elsevier B.V, 2020.
[4] D. Zhang, M. Fu, S.-H. Gao, and J.-L. Liu, “Curcumin and diabetes: a systematic review.:" Evidence-basedComplement.Altern.Med.,vol.2013,doi:10.1155/2013/636053.
[5] M. Popova, I. Trendafilova, Á. Szegedi, J. Mihály, P. Németh, S.G. Marinova, H.A. Aleksandrov and G.N. Vayssilov, "Experimental and theoretical study of quercetin complexes formed on pure silica and Zn-modified mesoporous MCM-41 and SBA-16 materials", Microporous Mesoporous Mater., 228 (2016) 256–265, doi: 10.1016/j.micromeso.2016.04.001.
[6] D. B. Abed, "Removal of Cobalt (Co(II)) from Aqueous Solution by Amino Functionalized SBA-15", Eng. Technol. J., 36 (2018) 703–708, doi: 10.30684/etj.36.7a.1.
[7] M. Sari Yilmaz, A. Palantoken, and S. Piskin, "Release of flurbiprofen using of SBA-15 mesoporous silica: Influence of silica sources and functionalization", J. Non. Cryst. Solids, 437 (2016) 80–86, doi: 10.1016/j.jnoncrysol.2016.01.020.
[8] H. F. Alazzawi, I. K. Salih, and T. M. Albayati, "Drug delivery of amoxicillin molecule as a suggested treatment for covid-19 implementing functionalized mesoporous SBA-15 with aminopropyl groups", Drug Deliv., 28 (2021) 856–864, doi: 10.1080/10717544.2021.1914778.
[9] M. Vallet-Regi, A. Rámila, R. P. Del Real, and J. Pérez-Pariente, "A new property of MCM-41: Drug delivery system", Chem. Mater., 13 (2001) 308–311, doi: 10.1021/cm0011559.
[10] A. S. Tsybko, T. G. Amstislavskaya, G. V Kontsevaya, and L. A. Gerlinskaya, “Effect of chronic inhalation of silicon dioxide nanoparticles (Tarkosil 25) on the expression of key genes of the serotonergic system in the mouse brain,” Nanotechnologies Russ., vol. 9, no. 3, pp. 213–218, 2014.
[11] C. L. Lay, H. Q. Liu, D. Wu, and Y. Liu, "Poly(ethylene glycol)-graft-hollow silica vesicles for drug delivery", Chem. - A Eur. J., 16 (2010) 3001–3004, doi: 10.1002/chem.200903291.
[12] S. K. Natarajan and S. Selvaraj, "Mesoporous silica nanoparticles: Importance of surface modifications and its role in drug delivery", RSC Adv., 4 (2014) 14328–14334, doi: 10.1039/c4ra00781f.
[13] M. Shinkai, "Functional magnetic particles for medical application", J. Biosci. Bioeng., 94 (2002) 606–613, doi: 10.1016/S1389-1723(02)80202-X.
[14] N. V. Mdlovu, K. S. Lin, M. T. Weng, C. C. Hsieh, Y. S. Lin, and M. J. Carrera Espinoza, "In vitro intracellular studies of pH and thermo-triggered doxorubicin conjugated magnetic SBA-15 mesoporous nanocarriers for anticancer activity against hepatocellular carcinoma", J. Ind. Eng. Chem., 102 (2021) 1–16, doi: 10.1016/j.jiec.2021.06.004.
[15] L. Harini, B. Karthikeyan, S. Srivastava, S.B. Suresh, C. Ross, G. Gnanakumar, S. Rajagopal, K. Sundar and T. Kathiresan, "Polyethylenimine-modified curcumin-loaded mesoporus silica nanoparticle (MCM-41) induces cell death in MCF-7 cell line", IET Nanobiotechnology, 11 (2017) 57–61, doi: 10.1049/iet-nbt.2016.0075.
[16] N. Taebnia, D. Morshedi, S. Yaghmaei, F. Aliakbari, F. Rahimi, and A. Arpanaei, "Curcumin-Loaded Amine-Functionalized Mesoporous Silica Nanoparticles Inhibit α-Synuclein Fibrillation and Reduce Its Cytotoxicity-Associated Effects", Langmuir, 32 (2016) 13394–13402, doi: 10.1021/acs.langmuir.6b02935.
[17] T. M. Albayati, G. M. Alwan, and O. S. Mahdy, "High performance methyl orange capture on magnetic nanoporous MCM-41 prepared by incipient wetness impregnation method", Korean J. Chem. Eng., 34 (2017) 259–265, doi: 10.1007/s11814-016-0231-2.
[18] S. Liu, K. Yao, L.-H. Fu, and M.-G. Ma, “Selective synthesis of Fe 3 O 4, γ-Fe 2 O 3, and α-Fe 2 O 3 using cellulose-based composites as precursors,” RSC Adv., vol. 6, no. 3, pp. 2135–2140, 2016.
[19] E. Ahmadi, N. Dehghannejad, S. Hashemikia, M. Ghasemnejad, and H. Tabebordbar, "Synthesis and surface modification of mesoporous silica nanoparticles and its application as carriers for sustained drug delivery", Drug Deliv., 21 (2014) 164–172, doi: 10.3109/10717544.2013.838715.
[20] T. M. Albayati and K. R. Kalash, "Polycyclic aromatic hydrocarbons adsorption from wastewater using different types of prepared mesoporous materials MCM-41in batch and fixed bed column", Process Saf. Environ. Prot., 133 (2020) 124–136, doi: 10.1016/j.psep.2019.11.007.
[21] M. M. Ayad, N. A. Salahuddin, A. A. El-Nasr, and N. L. Torad, "Amine-functionalized mesoporous silica KIT-6 as a controlled release drug delivery carrier", Microporous Mesoporous Mater., 229 (2016) 166–177, doi: 10.1016/j.micromeso. 04.029.
[22] L. Le Yu and H. Bi, "Facile synthesis and magnetic property of iron oxide/MCM-41 mesoporous silica nanospheres for targeted drug delivery", J. Appl. Phys., 111 (2012) 5–8, doi: 10.1063/1.3676203.
[23] J.A. Costa, A.C. Garcia, D.O. Santos, V.H. Sarmento, A.L. Porto, M.E.D. Mesquita and L.P. Romão, "A new functionalized MCM-41 mesoporous material for use in environmental applications", J. Braz. Chem. Soc., 25 (2014) 197–207, doi: 10.5935/0103-5053.20130284.
[24] Y. Guo, B. Chen, Y. Zhao, and T. Yang, "Fabrication of the magnetic mesoporous silica Fe-MCM-41-A as efficient adsorbent": performance, kinetics and mechanism, Sci. Rep., 11 (2021) 1–12, doi: 10.1038/s41598-021-81928-8.
[25] A. M. Alkafajy and T. M. Albayati, "High performance of magnetic mesoporous modification for loading and release of meloxicam in drug delivery implementation", Mater. Today Commun., 23 (2019) 100890, doi: 10.1016/j.mtcomm. 100890.
[26] Y. Shi and R. Crawfis, "Group tactics utilizing suppression and shelter", Proc. CGAMES 2014 USA - 19th Int. Conf. Comput. Games AI, Animat. Mobile, Interact. Multimedia, Educ. Serious Games, Im (2014) 20–27, doi: 10.1109/CGames. 6934139.
[27] A. Salis, D.F. Parsons, M. Bostrom, L. Medda, B. Barse, B.W. Ninham and M. Monduzzi, "Ion specific surface charge density of SBA-15 mesoporous silica", Langmuir, 26 (2010) 2484–2490, doi: 10.1021/la902721a.
[28] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka and G.D. Stucky, “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores Published by : American Association for the Advancement of Science Stable URL : REFERENCES Linked references are available on JSTO,” Science (80-. )., vol. 279, no. 5350, pp. 548–552, 2016.
[29] Y. Yao, H. Bing, X. Feifei, and C. Xiaofeng, "Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes", Chem. Eng. J., 170 (2011) 82–89, doi: 10.1016/j.cej.2011.03.031.
[30] T. M. Albayati, I. K. Salih, and H. F. Alazzawi, "Synthesis and characterization of a modified surface of SBA-15 mesoporous silica for a chloramphenicol drug delivery system", Heliyon, 5 (2019) e02539, doi: 10.1016/j.heliyon.2019.e02539.
[31] T. M. Albayati,and A. A. A. Jassam, “Experimental Study of Drug Delivery system for Prednisolone Loaded and Experimental Study of Drug Delivery system for Prednisolone Loaded and Released by Mesoporous Silica MCM-41,” vol. 15, no. March 2019, pp. 117–124, 2020.