Document Type : Research Paper

Authors

1 chemical engineering department , university of technology , Baghdad, Iraq

2 Chemical Engineering Dept., University of Technology-Iraq, Alsina’a Street, 10066 Baghdad, Iraq.

Abstract

Dyes are utilized in various industrial applications, and some businesses' effluents include hazardous dyes. Humans, aquatic creatures, and the environment are all harmed by dyes. As a result, adequately treated dyes that manage wastewater must be before being discharged into nearby bodies of water. Adsorption has proven to be high and cost-effective in removing dyes from wastewater. The sorbent material for dye removal from industrial effluent is activated carbon, but its high cost limits massive-scale utilization. The use of cost-effective adsorbents for wastewater discharge dye elimination is discussed and analyzed in this paper. This review underlines and displays a preview of these IASs, including natural, industrial, and made-up materiality/wastes and their utilization in removing dyes. Experiments have shown that various inexpensive non-traditional adsorbents lead to effective dye removal. Accordingly, studies dealing with the search for effective and affordable sources from current resources are becoming increasingly crucial for eliminating dye. The excess desire for functional and affordable processing modes and adsorption significance has led to inexpensive alternative sorbents (IASs). The isotherm analysis and adsorption kinetics indicate that Langmuir / Freundlich, besides the pseudo-second-order model, is the most used pattern for convenient empirical adsorption datum. Low-cost by-products from the agricultural, residential, and industrial sectors have been identified as viable wastewater treatment alternatives. They make it possible to remove contaminants from wastewater while also contributing to waste minimization, recovery, and reuse. This review revealed that some IASs, have ratable adsorption capabilities and rapid kinetics, besides having vastly available.

Graphical Abstract

Highlights

  • The application of inexpensive adsorbents to remove dyes from wastewater was reviewed.
  • The various removal technologies, along with their Pros and Cos were highlighted
  • Adsorption techniques were found to be very effective in dyes removal.
  • Adsorbent from biomass wastes is gaining increasing popularity.
  • Aerobic, anaerobic, or mixed processes also proved effective in removing dye.

Keywords

Main Subjects

[1] M. Kadhom, N. Albayati, H. Alalwan, and M. Al-Furaiji, Removal of dyes by agricultural waste, Sustain. Chem. Pharm.,  16 (2020) 100259 doi: 10.1016/j.scp.2020.100259.
[2] S. V. H. Madiraju, Y. T. Hung, and H. H. C. Paul, Synthetic wastewater treatment using agro-based adsorbents, Walailak J. Sci. Technol., 18 (2021), doi: 10.48048/WJST.2021.10337.
[3] I. H. Khalaf, F. T. Al-Sudani, A. A. AbdulRazak, T. Aldahri, and S. Rohani, Optimization of Congo red dye adsorption from wastewater by a modified commercial zeolite catalyst using response surface modeling approach, Water Sci. Technol., 83 (2021) 369–1383, doi: 10.2166/wst.2021.078.
[4] S. Shakoor and A. Nasar, Adsorptive treatment of hazardous methylene blue dye from artificially contaminated water using cucumis sativus peel waste as a low-cost adsorbent, Groundw. Sustain. Dev.,5 (2017) 152–159, doi: 10.1016/j.gsd.2017.06.005.
[5] S.K. Panda et al., Magnetite nanoparticles as sorbents for dye removal: a review,  Springer International Publishing, 2021, doi: 10.1007/s10311-020-01173-9.
[6] T. Al-dahri, A. A. AbdulRazak, and S. Rohani, Preparation and characterization of Linde-type A zeolite (LTA) from coal fly ash by microwave-assisted synthesis method: its application as adsorbent for removal of anionic dyes, Int. J. Coal Prep. Util., (2020), doi: 10.1080/19392699.2020.1792456.
[7] R. Mustapha et al., Removal of malachite green dye using oil palm empty fruit bunch as a low-cost adsorbent, Biointerface Res. Appl. Chem., 11 (2021) 14998–15008 doi: 10.33263/BRIAC116.1499815008.
[8] J. H. Potgieter, C. Pardesi, and S. Pearson, A kinetic and thermodynamic investigation into the removal of methyl orange from wastewater utilizing fly ash in different process configurations, Environ. Geochem. Health, 43 (2021) 2539–2550, doi: 10.1007/s10653-020-00567-6.
[9] R. Chikri, N. Elhadiri, M. Benchanaa, and Y. El maguana, Efficiency of sawdust as low-cost adsorbent for dyes removal, J. Chem., 2020, doi: 10.1155/2020/8813420.
[10] A. A. Abdulrazak, Z. M. Shakor, and S. Rohani, Optimizing Biebrich Scarlet removal from water by magnetic zeolite 13X using response surface method, J. Environ. Chem. Eng., 6 (2018) 6175–6183, doi: 10.1016/j.jece.2018.09.043.
[11] Z. Majid, A. A. AbdulRazak, and W. A. H. Noori, Modification of Zeolite by Magnetic Nanoparticles for Organic Dye Removal,  Arab. J. Sci. Eng., 44 (2019) 5457–5474, doi: 10.1007/s13369-019-03788-9.
[12] J. H. P. C. P. S. Pearson, A kinetic and thermodynamic investigation into the removal of methyl orange from wastewater utilizing fly ash in different process configurations,Environ. Geochem. Health, 6 (2020) doi: 10.1007/s10653-020-00567-6.
[13] A. Aichour and H. Zaghouane, Synthesis and characterization of hybrid activated bentonite / alginate composite to improve its effective elimination of dyes stuff from wastewater, Appl. Water Sci., (2020) doi: 10.1007/s13201-020-01232-0.
[14] Z. Jia, Z. Li, S. Li, Y. Li, and R. Zhu, Adsorption performance and mechanism of methylene blue on chemically activated carbon spheres derived from hydrothermally-prepared poly(vinyl alcohol) microspheres, J. Mol. Liq., 220 (2016) doi: 10.1016/j.molliq.2016.04.063.
[15] A. H. Jawad, R. A. Rashid, M. A. M. Ishak, and L. D. Wilson, Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies, Desalin. Water Treat., 57 (2016) 25194–25206, doi: 10.1080/19443994.2016.1144534.
[16] M. A. Islam, M. J. Ahmed, W. A. Khanday, M. Asif, and B. H. Hameed, Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal, Ecotoxicol. Environ. Saf., 138 (2016) 279–285, 2017, doi: 10.1016/j.ecoenv.2017.01.010.
[17] M. Danish, W. A. Khanday, R. Hashim, N. S. B. Sulaiman, M. N. Akhtar, and M. Nizami, Application of optimized large surface area date stone (Phoenix dactylifera) activated carbon for rhodamin B removal from aqueous solution: Box-Behnken design approach, Ecotoxicol. Environ. Saf., 139 (2017) 280–290, doi: 10.1016/j.ecoenv.2017.02.001.
[18] P. Srivatsav, B. S. Bhargav, and V. Shanmugasundaram, Biochar as an Eco-Friendly and Economical Adsorbent for the Removal of Colorants ( Dyes ) from Aqueous Environment : A Review, Water, (2020)1–28,  doi: 10.3390/w12123561.
[19] L. A. Romero-Cano, H. García-Rosero, L. V. Gonzalez-Gutierrez, L. A. Baldenegro-Pérez, and F. Carrasco-Marín, Functionalized adsorbents prepared from fruit peels: Equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution, J. Clean. Prod., 162 (2017) 195–204, doi: 10.1016/j.jclepro.2017.06.032.
[20] K. Rahimi, R. Mirzaei, A. Akbari, and N. Mirghaffari, Preparation of nanoparticle-modified polymeric adsorbent using wastage fuzzes of mechanized carpet and its application in dye removal from aqueous solution, J. Clean. Prod.,178 (2018) 373–383, doi: 10.1016/j.jclepro.2017.12.213.
[21] S. Kocaman, Synthesis and cationic dye biosorption properties of a novel low-cost adsorbent: coconut waste modified with acrylic and polyacrylic acids, Int. J. Phytoremediation,  22 (2020) 551–566, doi: 10.1080/15226514.2020.1741509.
[22] O. A. A. Eletta, S. I. Mustapha, O. A. Ajayi, and A. T. Ahmed, Optimization of dye removal from textile wastewater using activated carbon from sawdust, Niger. J. Technol. Dev.,15 (2018) 26, doi: 10.4314/njtd.v15i1.5.
[23] R. V. Kandisa and N. Saibaba KV, Dye Removal by Adsorption: A Review, J. Bioremediation Biodegrad., 7 (2016), doi: 10.4172/2155-6199.1000371.
[24] S. Samsami, M. Mohamadi, M. H. Sarrafzadeh, E. R. Rene, and M. Firoozbahr, “Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives, Process Saf. Environ. Prot., 143 (2020) 138–163, doi: 10.1016/j.psep.2020.05.034.
[25] T. Al-Dahri, A. A. J. AbdulRazak, I. H. Khalaf, and S. Rohani, Response surface modeling of the removal of methyl orange dye from its aqueous solution using two types of zeolite synthesized from coal fly ash, Mater. Express, 8 (2018) 234–244, doi: 10.1166/mex.2018.1433.
[26] G. Crini, E. Lichtfouse, L. D. Wilson, and N. Morin-Crini, Conventional and non-conventional adsorbents for wastewater treatment, Environmental Chemistry Letters, 17 (2019) 195–213,  doi: 10.1007/s10311-018-0786-8.
[27] I. Anastopoulos and G. Z. Kyzas, Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena?, J. Mol. Liq., 218 (2016) 174–185,  doi: 10.1016/j.molliq.2016.02.059.
[28] S. Afroze, Aqueous Phase Adsorption of Organic/Inorganic Contaminants by Eucalyptus Bark (Eucalyptus Sheathiana) Biomass, April. 2016, doi: 10.1080/19443994.2015.1004115
[29] S. Afroze and T. K. Sen, A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents, Water. Air. Soil Pollut., 229 (2018) doi: 10.1007/s11270-018-3869-z.
[30] R. K. Gautam, A. Mudhoo, G. Lofrano, and M. C. Chattopadhyaya, Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration, J. Environ. Chem. Eng., 2 (2014) 239–259,doi: 10.1016/j.jece.2013.12.019.
[31] Q. Lin, K. Wang, M. Gao, Y. Bai, L. Chen, and H. Ma, Effectively removal of cationic and anionic dyes by pH-sensitive amphoteric adsorbent derived from agricultural waste-wheat straw, J. Taiwan Inst. Chem. Eng., 76 (2017) 65–72, doi: 10.1016/j.jtice.2017.04.010.
[32] S. Sadaf and H. N. Bhatti, Journal of the Taiwan Institute of Chemical Engineers Batch and fixed bed column studies for the removal of Indosol Yellow BG dye by peanut husk, J. Taiwan Inst. Chem. Eng., 45 (2014) 541–553,doi: 10.1016/j.jtice.2013.05.004.
[33] A. A. AbdulRazak and S. Rohani, Sodium Dodecyl Sulfate-Modified Fe2O3/Molecular Sieves for Removal of Rhodamine B Dyes, Adv. Mater. Sci. Eng., (2018 ) doi: 10.1155/2018/3849867.
[34] B. Zhao, W. Xiao, Y. Shang, H. Zhu, and R. Han, Adsorption of light green anionic dye using cationic surfactant-modified peanut husk in batch mode, Arab. J. Chem., 1 (2017) S3595–S3602, doi: 10.1016/j.arabjc.2014.03.010.
[35] Y. Zhao, Y. Xia, H. Yang, Y. Wang, and M. Zhao, Synthesis of glutamic acid-modified magnetic corn straw: Equilibrium and kinetic studies on methylene blue adsorption, Desalin. Water Treat., 52 (2014) 199–207,doi: 10.1080/19443994.2013.782256.
[36] B. Zhao, Y. Shang, W. Xiao, C. Dou, and R. Han, Adsorption of Congo red from solution using cationic surfactant modified wheat straw in column model, J. Environ. Chem. Eng., 2 (2014) 40–45, doi: 10.1016/j.jece.2013.11.025.
[37] W. Huang, Y. Hu, Y. Li, Y. Zhou, and D. Niu, Citric acid-crosslinked β -cyclodextrin for simultaneous removal of bisphenol A , methylene blue and copper : The roles of cavity and surface functional groups, J. Taiwan Inst. Chem. Eng., 82 (2018) 189–197,doi: 10.1016/j.jtice.2017.11.021.
[38] Y. Zhou, J. Lu, Y. Zhou, and Y. Liu, Recent advances for dyes removal using novel adsorbents : A review , Environ. Pollut., 252 (2019) 352–365, doi: 10.1016/j.envpol.2019.05.072.
[39] P. Taylor, et al., Adsorption of Divalent Heavy Metal Ions from Aqueous Solution by Citric Acid Modified Pine Sawdust Adsorption of Divalent Heavy Metal Ions from Aqueous Solution by Citric Acid Modified Pine Sawdust, Separation Science and Technology, ( 2015) 37–41.doi: 10.1080/01496395.2014.956223.
[40] Y. Zhou, L. Chen, P. Lu, X. Tang, and J. Lu, Removal of bisphenol A from aqueous solution using modified fibric peat as a novel biosorbent, Sep. Purif. Technol., 81 (2011) 184–190, doi: 10.1016/j.seppur.2011.07.026.
[41] D. D. I. Química, I. T. De Aguascalientes, and C. A. L. Sellaoui, a School Laboratory of Quantum and Statistical Physics , LR18ES18 , Monastir University , Faculty of, Chem. Eng. J., (2018), doi: 10.1016/j.cej.2018.12.050.
[42] L. Sellaoui, G. L. Dotto, A. Ben Lamine, and A. Erto, Interpretation of single and competitive adsorption of cadmium and zinc on activated carbon using monolayer and exclusive extended monolayer models, Environmental Science and Pollution Research (2017), doi: 10.1007/s11356-017-9562-8.
[43]  Z. Yanbo, Z. Ruzhuang, G. Xiaochen, Z. Qing, and L. Jun, Sorption characteristics of phenanthrene and pyrene to surfactant-modified peat from aqueous solution : the contribution of partition and adsorption, water sciencce and technology (2015) 296–302, doi: 10.2166/wst.2014.517.
[44] Y. Zhou, X. Gu, R. Zhang, and J. Lu, Removal of Aniline from Aqueous Solution using Pine Sawdust Modified with Citric Acid and β ‑ Cyclodextrin, Ind. Eng. Chem. Res. 2014, doi: 10.1021/IE403829S.
[45] K. Y. Foo and B. H. Hameed, Insights into the modeling of adsorption isotherm systems,Chem. Eng. J.,156 (2010) 2–10, doi: 10.1016/J.CEJ.2009.09.013.
[46] J. H. Potgieter, C. Pardesi, and S. Pearson, A kinetic and thermodynamic investigation into the removal of methyl orange from wastewater utilizing fly ash in different process configurations, Environ. Geochem. Health, 43 (2021) 2539–2550, doi: 10.1007/s10653-020-00567-6.
[47] D. F. Romdhane, Y. Satlaoui, R. Nasraoui, A. Charef, and R. Azouzi, Adsorption, Modeling, Thermodynamic, and Kinetic Studies of Methyl Red Removal from Textile-Polluted Water Using Natural and Purified Organic Matter Rich Clays as Low-Cost Adsorbent, J. Chem., (2020), doi: 10.1155/2020/4376173.
[48] R. Saxena and S. Sharma, Adsorption and Kinetic Studies on the Removal of Methyl Red from Aqueous Solutions Using Low-cost Adsorbent: Guargum Powder, Int. J. Sci. Eng. Res., 7 (2016) 675–683 .
[49] A. U. Itodo, A. Abdulrahman, A. Usman, and V. C. Ugboaja, Pseudo Constants for Methyl Red Sorption: A Rate Study of Received and Derived Activated Carbon, J. Encapsulation Adsorpt. Sci., 01 (2011) 57–64, doi: 10.4236/jeas.2011.14008.
[50] D. F. Romdhane, Y. Satlaoui, R. Nasraoui, A. Charef, and R. Azouzi, Adsorption , Modeling , Thermodynamic , and Kinetic Studies of Methyl Red Removal from Textile-Polluted Water Using Natural and Purified Organic Matter Rich Clays as Low-Cost Adsorbent, Journal of Chemistry, vol. 2020, Article. ID 4376173, 17 pages, 2020  https://doi.org/10.1155/2020/4376173.
[51] L. Largitte and R. Pasquier, Chemical Engineering Research and Design A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon, Chem. Eng. Res. Des., 109 (2016) 495–504, doi: 10.1016/j.cherd.2016.02.006.
[52] H. Ait Ahsaine et al., Cationic dyes adsorption onto high surface area ‘almond shell’ activated carbon: Kinetics, equilibrium isotherms and surface statistical modeling, Mater. Today Chem., 8(2018)121–132, doi: 10.1016/j.mtchem.2018.03.004.
[53] N. Balkaya, Biosorption of Dye from Aqueous Solutions by a Waste Lignocellulosic Material, 277–295, 2019. doi: 10.1007/978-3-319-95888-0_23.
[54] F. Deniz, A Novel Eco-Biosorbent for Decontamination of Hazardous Dye from Aqueous Medium, J. Polym. Environ., 25 (2017) 1242–1250, doi: 10.1007/s10924-016-0901-5.
[55] A. H. Jawad, R. Razuan, J. N. Appaturi, and L. D. Wilson, Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus)rind prepared via one-step liquid phase H 2 SO 4 activation, Surfaces and Interfaces, 16 (2018) 76–84,  doi: 10.1016/j.surfin.2019.04.012.
[56] M. Malakootian and M. R. Heidari, Reactive orange 16 dye adsorption from aqueous solutions by psyllium seed powder as a low-cost biosorbent: kinetic and equilibrium studies, Appl. Water Sci., 8 (2018) 1–9, doi: 10.1007/s13201-018-0851-2.
[57] Y. Miyah, A. Lahrichi, M. Idrissi, A. Khalil, and F. Zerrouq, Adsorption of methylene blue dye from aqueous solutions onto walnut shells powder: Equilibrium and kinetic studies, Surfaces and Interfaces, 11 (2018) 74–81, doi: 10.1016/j.surfin.2018.03.006.
[58] V. S. Munagapati, V. Yarramuthi, Y. Kim, K. M. Lee, and D. S. Kim, Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent, Ecotoxicol. Environ. Saf.,148 (2017) 601–607, 2018, doi: 10.1016/j.ecoenv.2017.10.075.
[59] B. Takam, E. Acayanka, G. Y. Kamgang, M. T. Pedekwang, and S. Laminsi, Enhancement of sorption capacity of cocoa shell biomass modified with non-thermal plasma for removal of both cationic and anionic dyes from aqueous solution, Environ. Sci. Pollut. Res.,  24 (2017) 16958–16970, doi: 10.1007/s11356-017-9328-3.
[60] V. K. Gupta and Suhas, Application of low-cost adsorbents for dye removal - A review, J. Environ. Manage., 90 (2009) 2313–2342, doi: 10.1016/j.jenvman.2008.11.017.
[61] V. K. Gupta, A. Mittal, R. Jain, M. Mathur, and S. Sikarwar, Adsorption of Safranin-T from wastewater using waste materials- activated carbon and activated rice husks, J. Colloid Interface Sci., 303 (2006) 80–86, doi: 10.1016/j.jcis.2006.07.036.
[62] O. Hamdaoui, “Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick, J. Hazard. Mater., 135 (2006) 264–273, 2006, doi: 10.1016/j.jhazmat.2005.11.062.
[63] Y. El Maguana, N. Elhadiri, M. Benchanaa, and R. Chikri, Activated Carbon for Dyes Removal: Modeling and Understanding the Adsorption Process,  J.Chem.,  (2020), doi: 10.1155/2020/2096834.
[64] G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresour. Technol., 97 (2006) 1061–1085, doi: 10.1016/j.biortech.2005.05.001.
[65] A. A. Adeyemo, I. O. Adeoye, and O. S. Bello, Adsorption of dyes using different types of clay: a review, Appl. Water Sci., 7 (2017) 543–568,  doi: 10.1007/s13201-015-0322-y.
[66] Q. H. Hu, S. Z. Qiao, F. Haghseresht, M. A. Wilson, and G. Q. Lu, Adsorption study for removal of basic red dye using bentonite, Ind. Eng. Chem. Res., 45 (2006) 733–738.
[67] Z. Huang et al., Modified bentonite adsorption of organic pollutants of dye wastewater, Mater. Chem. Phys., 202 (2017) 266–276,  doi: 10.1016/j.matchemphys.2017.09.028.
[68] M. Sarabadan, H. Bashiri, and S. M. Mousavi, Removal of crystal violet dye by an efficient and low cost adsorbent: Modeling, kinetic, equilibrium and thermodynamic studies, Korean J.Chem.Eng., 36 (2019) 1575–1586, doi: 10.1007/s11814-019-0356-1.
[69] J. M. Gómez, J. Galán, A. Rodríguez, and G. M. Walker, Dye adsorption onto mesoporous materials: PH influence, kinetics and equilibrium in buffered and saline media, J. Environ. Manage., 146 (2014) 355–361, doi: 10.1016/j.jenvman.2014.07.041.
[70] D.A. Links, Organofunctionalized magnesium phyllosilicates as mono- or bifunctitonal entities for industrial dyes removal, RSC Advances, ( 2012) 3502–3511, doi: 10.1039/c2ra00935h.
[71] G. V Brião, S. L. Jahn, E. L. Foletto, and G. L. Dotto, Highly e ffi cient and reusable mesoporous zeolite synthetized from a biopolymer for cationic dyes adsorption, Colloids Surfaces A, 556 (2018) 43–50, doi: 10.1016/j.colsurfa.2018.08.019.
[72] S. T. Akar and R. Uysal, Untreated clay with high adsorption capacity for effective removal of C . I . Acid Red 88 from aqueous solutions : Batch and dynamic flow mode studies, Chem. Eng. J.,162 (2010) 591–598, doi: 10.1016/j.cej.2010.06.001.
[73] C. Puri and G. Sumana, Applied Clay Science Highly e ff ective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite,Appl. Clay Sci., 166 (2018) 102–112, doi: 10.1016/j.clay.2018.09.012.
[74] T. Li et al., Applied Clay Science Template-free synthesis of kaolin-based mesoporous silica with improved speci fi c surface area by a novel approach, Appl. Clay Sci., (2015)1–6, doi: 10.1016/j.clay.2015.01.022.
[75] N. Belhouchat, H. Zaghouane-boudiaf, and C. Viseras, Applied Clay Science Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite / sodium alginate encapsulated beads, Appl.Clay Sci.,(2016) doi: 10.1016/j.clay.2016.08.031.
[76] Q. Wang, Y. Wang, and L. Chen, SC, Carbohydr. Polym., (2019), doi: 10.1016/j.carbpol.2019.01.080.
[77] J. E. Aguiar et al., Applied Clay Science Adsorption study of reactive dyes onto porous clay heterostructures, Appl. Clay Sci.,135 (2017) 35–44,  doi: 10.1016/j.clay.2016.09.001.
[78] W. A. Khanday, M. Asif, and B. H. Hameed, Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes,Int. J. Biol. Macromol., (2016), doi: 10.1016/j.ijbiomac.2016.10.075.
[79] I. Chaari, E. Fakhfakh, M. Medhioub, and F. Jamoussi, Comparative study on adsorption of cationic and anionic dyes by smectite rich natural clays, J. Mol. Struct., (2018), doi: 10.1016/j.molstruc.2018.11.039.
[80] L. Fan, C. Luo, X. Li, F. Lu, H. Qiu, and M. Sun, Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue,J. Hazard. Mater., 215–216 (2010) 272–279,doi: 10.1016/j.jhazmat.2012.02.068.
[81] L. Zhang, Z. Cheng, X. Guo, X. Jiang, and R. Liu, Process optimization , kinetics and equilibrium of orange G and acid orange 7 adsorptions onto chitosan / surfactant, J. Mol. Liq., 197 (2014) 353–367, doi: 10.1016/j.molliq.2014.06.007.
[82] D. Wang, L. Liu, X. Jiang, J.Yu, X. Chen , Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, (2015), doi: 10.1016/j.colsurfa.2014.11.021.
[83] L. Yu, W. Xue, L. Cui, W. Xing, X. Cao, and H. Li, Use of hydroxypropyl-β-cyclodextrin/polyethylene glycol 400, modified Fe3O4 nanoparticles for congo red removal, International Journal of Biological Macromolecules, 64 (2014) 233–239,  doi0: 10.1016/j.ijbiomac.2013.12.009.
[84] R. Zhao, Y. Wang, X. Li, B. Sun, , and C. Wang, Synthesis of β-Cyclodextrin-Based Electrospun Nanofiber Membranes for Highly Efficient Adsorption and Separation of Methylene Blue. ACS Appl. Mater. Interfaces  , 7 (2015) 26649–26657.
[85] S. Chatterjee, T. Chatterjee, and S. H. Woo, Influence of the polyethyleneimine grafting on the adsorption capacity of chitosan beads for Reactive Black 5 from aqueous solutions, Chemical Engineering Journal 166 (2011) 168–175. doi: 10.1016/j.cej.2010.10.047.
[86] M. Wang et al., Hierarchical Porous Chitosan Sponges as Robust and Recyclable Adsorbents for Anionic Dye Adsorption, Sci. Rep., 7 (2017) 1–11, doi: 10.1038/s41598-017-18302-0.
[87] M. Salzano de Luna et al., Optimization of dye adsorption capacity and mechanical strength of chitosan aerogels through crosslinking strategy and graphene oxide addition, Carbohydr. Polym., 211 (2019) 195–203, doi: 10.1016/j.carbpol.2019.02.002.
[88] Y. Jiang, B. Liu, J. Xu, K. Pan, H. Hou, J. Hu, J. Yang, Cross-linked chitosan β-cyclodextrin composite for selective removal of methyl orange Adsorption performance and mechanism. Carbohydrate Polymers 182 (2018) 106-114, doi: 10.1016/j.carbpol.2017.10.097
[89] Y. Chen, L. Chen, H. Bai, and L. Li, Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification, J. Mater. Chem. A, 1 (2013) 1992–2001,  doi: 10.1039/c2ta00406b.
[90] R. Schio, B. C. Rosa, J. O. Gonçalves, L. A. A. Pinto, E. S. Mallmann, and G. L. Dotto, Synthesis of a bio–based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye, Int. J. Biol. Macromol.,  , (2018), doi: 10.1016/j.ijbiomac.2018.09.186.
[91] R. Zhao, Y. Wang, X. Li, B. Sun, Z. Jiang, and C. Wang, Water-insoluble sericin/β-cyclodextrin/PVA composite electrospun nanofibers as effective adsorbents towards methylene blue, Colloids and Surfaces B: Biointerfaces, 136 (2015)  375–382,doi: 10.1016/j.colsurfb.2015.09.038.
[92] M. Massaro, C. G. Colletti, G. Lazzara, S. Guernelli, R. Noto, and S. Riela, Synthesis and Characterization of Halloysite − Cyclodextrin Nanosponges for Enhanced Dyes Adsorption, ACS Sustainable Chem. Eng. (2017). doi: 10.1021/acssuschemeng.6b03191.
[93] U. Habiba, T. A. Siddique, J. J. Li Lee, T. C. Joo, B. C. Ang, and A. M. Afifi, Adsorption study of methyl orange by chitosan/polyvinyl alcohol/zeolite electrospun composite nanofibrous membrane, Carbohydr. Polym.,191 (2018) 79–85, doi: 10.1016/j.carbpol.2018.02.081.
[94] M. Salzano de Luna et al., Chitosan hydrogels embedding hyper-crosslinked polymer particles as reusable broad-spectrum adsorbents for dye removal, Carboh ydr. Polym., 177 (2017) 347–354, doi: 10.1016/j.carbpol.2017.09.006.
[95] H. Parab, M. Sudersanan, N. Shenoy, T. Pathare, and B. Vaze, Use of agro-industrial wastes for removal of basic dyes from aqueous solutions, Clean - Soil, Air, Water,  37 (2009) 963–969, doi: 10.1002/clen.200900158.
[96] P. Sharma, R. Kaur, C. Baskar, and W. J. Chung, Removal of methylene blue from aqueous waste using rice husk and rice husk ash, Desalination, 259 (2010) 249–257, doi: 10.1016/j.desal.2010.03.044.
[97] L. A. R. Giusto, F. L. Pissetti, T. S. Castro, and F. Magalhães, Preparation of Activated Carbon from Sugarcane Bagasse Soot and Methylene Blue Adsorption, Water. Air. Soil Pollut., 228 (2017), doi: 10.1007/s11270-017-3422-5.
[98] J. Georgin, F. C. Drumm, P. Grassi, D. Franco, D. Allasia, and G. L. Dotto, Potential of Araucaria angustifolia bark as adsorbent to remove Gentian Violet dye from aqueous effluents, Water Sci. Technol.,78 (2018) 1693–1703 doi: 10.2166/wst.2018.448.
[99] G. Z. Kyzas, N. K. Lazaridis, and A. C. Mitropoulos, Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: Equilibrium, reuse and thermodynamic approach, Chem. Eng. J.,189–190 (2012) 148–159, doi: 10.1016/j.cej.2012.02.045.
[100] J. Xiong, C. Jiao, C. Li, D. Zhang, H. Lin, and Y. Chen, A versatile amphiprotic cotton fiber for the removal of dyes and metal ions, Cellulose, 21 (2014) 3073–3087,  doi: 10.1007/s10570-014-0318-z.
[101] F. Deniz and R. A. Kepekci, Dye biosorption onto pistachio by-product: A green environmental engineering approach, J. Mol. Liq.,  219 (2016) 194–200, doi: 10.1016/j.molliq.2016.03.018.
[102] A. Khaled, A. El Nemr, A. El-Sikaily, and O. Abdelwahab, Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: Adsorption isotherm and kinetic studies, J.Hazard. Mater., 165 (2009) 100–110,  doi: 10.1016/j.jhazmat.2008.09.122.
[103] H. H. Hammud, A. Shmait, and N. Hourani, Removal of Malachite Green from water using hydrothermally carbonized pine needles, RSC Adv., 5 (2015) 7909–7920, doi: 10.1039/c4ra15505j.
[104] Y. Li et al., Hydrochars from bamboo sawdust through acid assisted and two-stage hydrothermal carbonization for removal of two organics from aqueous solution, Bioresour. Technol., 261 (2018) 257–264,  doi: 10.1016/j.biortech.2018.03.108.
[105] R. Zhang, Y. Zhou, X. Gu, and J. Lu, Competitive Adsorption of Methylene Blue and Cu2+ onto Citric Acid Modified Pine Sawdust, Clean - Soil, Air, Water,43 ( 2015) 96–103, doi: 10.1002/clen.201300818.
[106] F. S. Zhang and H. Itoh, Adsorbents made from waste ashes and post-consumer PET and their potential utilization in wastewater treatment, J. Hazard. Mater., 101 (2003) 323–337,  doi: 10.1016/S0304-3894(03)00208-5.
[107] A. Tor and Y. Cengeloglu, Removal of congo red from aqueous solution by adsorption onto acid activated red mud, J. Hazard. Mater., 138(2006)409–415, doi: 10.1016/j.jhazmat.2006.04.063.
[108] M. M. Hamed, I. M. Ahmed, and S. S. Metwally, Adsorptive removal of methylene blue as organic pollutant by marble dust as eco-friendly sorbent, J. Ind. Eng. Chem., 20 (2014) 2370–2377, doi: 10.1016/j.jiec.2013.10.015.
[109] I. C. Pereira et al., Thermal and thermal-acid treated sewage sludge for the removal of dye reactive Red 120: Characteristics, kinetics, isotherms, thermodynamics and response surface methodology design, J. Environ. Chem. Eng.,6 (2018) 7233–7246, doi: 10.1016/j.jece.2018.10.060.
[110] S. I. Suárez-Vázquez, J. A. Vidales-Contreras, J. M. Márquez-Reyes, A. Cruz-López, and C. García-Gómez, Removal of congo red dye using electrocoagulated metal hydroxide in a fixed-bed column: Characterization, optimization and modeling studies, Rev. Mex. Ing. Quim.,18 (2019) 1133–1142,  doi: 10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/SuarezV.
[111] A. M. S. Baptisttella, A. A. D. Araújo, M. C. Barreto, V. S. Madeira, and M. A. da Motta Sobrinho, The use of metal hydroxide sludge (in natura and calcined) for the adsorption of brilliant blue dye in aqueous solution, Environ. Technol. 40 (2019) 3072–3085, doi: 10.1080/09593330.2018.1466916.
[112] J. Zhou, K. Xia, X. Liu, L. Fang, H. Du, and X. Zhang, Utilization of cationic polymer-modified fly ash for dye wastewater treatment, Clean Technol. Environ. Policy, 23 (2021) 1273–1282, doi: 10.1007/s10098-020-02019-2.
[113] P. Primerano and M. F. Milazzo, Recycling of oil fly ash in the adsorption of dyes from industrial wastewater, Ecol. Chem. Eng. S,27 (2020) 257–270, doi: 10.2478/eces-2020-0012.
[114] J. Wang, P. Sun, H. Xue, J. Chen, H. Zhang, and W. Zhu, Red mud derived facile hydrothermal synthesis of hierarchical porous α-Fe2O3 microspheres as efficient adsorbents for removal of Congo red, J. Phys. Chem. Solids, 140 (2019) 2020, doi: 10.1016/j.jpcs.2020.109379.
[115] Y. J. C. Martins, A. C. M. Almeida, B. M. Viegas, R. A. do Nascimento, and N. F. d. P. Ribeiro, Use of red mud from amazon region as an adsorbent for the removal of methylene blue: process optimization, isotherm and kinetic studies, Int. J. Environ. Sci. Technol.,17 (2020) 4133–4148,  doi: 10.1007/s13762-020-02757-2.
[116] A. Naga Babu, D. Srinivasa Reddy, P. Sharma, G. Suresh Kumar, K. Ravindhranath, and G. V. Krishna Mohan, Removal of hazardous indigo carmine dye from waste water using treated red mud, Mater. Today Proc., 17 (2010) 198–208,  doi: 10.1016/j.matpr.2019.06.419.
[117] G. M. Ratnamala, K. V. Shetty, and G. Srinikethan, Removal of remazol brilliant blue dye from dye-contaminated water by adsorption using red mud: Equilibrium, kinetic, and thermodynamic studies, Water. Air. Soil Pollut., 223 (2012) 6187–6199, doi: 10.1007/s11270-012-1349-4.
[118] Q. Wang et al., Honeycomb-like activated carbon with microporous nanosheets structure prepared from waste biomass cork for highly efficient dye wastewater treatment, J. Hazard. Mater., 416 (2021) 125896,  doi: 10.1016/j.jhazmat.2021.125896.
[119] Y. Tang, J. Zhao, Y. Zhang, J. Zhou, and B. Shi, Conversion of tannery solid waste to an adsorbent for high-efficiency dye removal from tannery wastewater: A road to circular utilization, Chemosphere, 263 (2021) 127987, doi: 10.1016/j.chemosphere.2020.127987.
[120] N. N. B. Rosli, L. C. Ming, A. H. Mahadi, S. Wattanasiriwech, R. C. Lim, and N. T. R. N. Kumara, Ruthenium dye (N3) removal from simulated wastewater using bamboo charcoal and activated bamboo charcoal, Key Eng. Mater.,765 (2018) 92–98,doi: 10.4028/www.scientific.net/KEM.765.92.
[121] C. M. Ma, G. B. Hong, and Y. K. Wang, Performance evaluation and optimization of dyes removal using rice bran-based magnetic composite adsorbent, Materials ., 13 (2020) 1–18, doi: 10.3390/ma13122764.
[122] A. S. Eltaweil, H. Ali Mohamed, E. M. Abd El-Monaem, and G. M. El-Subruiti, Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms, Adv. Powder Technol., 31 (2020) 1253–1263, doi: 10.1016/j.apt.2020.01.005.
[123] P. Zhang et al., A green biochar/iron oxide composite for methylene blue removal, J. Hazard. Mater.,384 (2019) 121286, doi: 10.1016/j.jhazmat.2019.121286.
[124] E. Alver, A. Ü. Metin, and F. Brouers, Methylene blue adsorption on magnetic alginate/rice husk bio-composite,  Int. J. Biol. Macromol., 154 (2020) 104–113,  doi: 10.1016/j.ijbiomac.2020.02.330.
[125] M. S. A. Eren, H. Arslanoglu, and H. Çiftçi, Production of microporous Cu-doped BTC (Cu-BTC) metal-organic framework composite materials, superior adsorbents for the removal of methylene blue (Basic Blue 9), J. Environ. Chem. Eng., 8 (2020), doi: 10.1016/j.jece.2020.104247.
[126] N. H. Singh, K. Kezo, A. Debnath, and B. Saha, Enhanced adsorption performance of a novel Fe-Mn-Zr metal oxide nanocomposite adsorbent for anionic dyes from binary dye mix: Response surface optimization and neural network modeling, Appl. Organomet. Chem., 32 (2018) 1–17, doi: 10.1002/aoc.4165.
[127] M. N. Zafar, Q. Dar, F. Nawaz, M. N. Zafar, M. Iqbal, and M. F. Nazar, Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles, J. Mater. Res. Technol., 8 (2019) 713–725,  doi: 10.1016/j.jmrt.2018.06.002.
[128] S. I. Siddiqui, B. Fatima, N. Tara, G. Rathi, and S. A. Chaudhry, Recent advances in remediation of synthetic dyes from wastewaters using sustainable and low-cost adsorbents. In The Textile Institute Book Series, The Impact and Prospects of Green Chemistry for Textile Technology, Woodhead Publishing, (2019) 471-507, doi.org/10.1016/B978-0-08-102491-1.00015-0.
[129] A. Mehta and R. Siddique, An overview of geopolymers derived from industrial by-products, Constr. Build. Mater., 127 (2016) 183–198,  doi: 10.1016/j.conbuildmat.2016.09.136.
[130] A. K. Jain, V. K. Gupta, A. Bhatnagar, and Suhas, Utilization of industrial waste products as adsorbents for the removal of dyes, J. Hazard. Mater.,  101 (2003) 31–42,  doi: 10.1016/S0304-3894(03)00146-8.
[131] Y. S. Al-Degs, A. Ghrir, H. Khoury, G. M. Walker, M. Sunjuk, and M. A. Al-Ghouti, Characterization and utilization of fly ash of heavy fuel oil generated in power stations, Fuel Process. Technol., 123 (2014) 41–46,  doi: 10.1016/j.fuproc.2014.01.040.
[132] M. Taneez and C. Hurel, A review on the potential uses of red mud as amendment for pollution control in environmental media, Environ. Sci. Pollut. Res., 26 (2019) 22106–22125, doi: 10.1007/s11356-019-05576-2.
[133] S. Singh, K. C. Barick, and D. Bahadur, Functional oxide nanomaterials and nanocomposites for the removal of heavy metals and dyes, Nanomater. Nanotechnol., 3 (2013) 1–19, doi: 10.5772/57237.
[134] L. H. Li, J. Xiao, P. Liu, and G. W. Yang, Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal,Sci. Rep., 5 (2015) 1–6, doi: 10.1038/srep09028.
[135] A. M. Awad  et al., Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview, Journal of Molecular Liquids,  301. Elsevier B.V., 2020, doi: 10.1016/j.molliq.2019.112335.
[136] V. A. E. Barrios, J. R. R. Méndez, N. V. P. Aguilar, G. A. Espinosa, and J. L. D. Rodríguez, FTIR - An Essential Characterization Technique for Polymeric Materials,  Infrared Spectrosc. - Mater. Sci. Eng. Technol., 2012. doi: 10.5772/36044.
[137] M. Odalanowska,  A. Skrzypczak and  S. Borysiak, Innovative ionic liquids as functional agent for wood-polymer composites. Cellulose 28 (2021) 10589–10608. https://doi.org/10.1007/s10570-021-04190-1.
[138] R.M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Reactions, Occurences and Uses.  2nd Edition, Wiley-VCH, Weinheim.http://dx.doi.org/10.1002/3527602097
[139] M. Joshi, A. Bhattacharyya, and S. W. Ali, Characterization techniques for nanotechnology applications in textiles, Indian J. Fibre Text. Res., 33 (2008) 304–317.
[140] R. Sharma, D. P. Bisen, U. Shukla, and B. G. Sharma, X-ray diffraction: a powerful method of characterizing nanomaterials, Recent Res. Sci. Technol.,4 (2012) 77–79.
[141] K. R. Hurley, H. L. Ring, H. Kang, N. D. Klein, and C. L. Haynes, Characterization of Magnetic Nanoparticles in Biological Matrices, Anal. Chem., 87 (2015) 11611–11619,  doi: 10.1021/acs.analchem.5b02229.
[142] H. Fissan, S. Ristig, H. Kaminski, C. Asbach, and M. Epple, Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization,  Anal. Methods, 6 (2014) 7324–7334,  doi: 10.1039/c4ay01203h.
[143] A. Ali et al., Synthesis, characterization, applications, and challenges of iron oxide nanoparticles, Nanotechnol. Sci. Appl., 9 (2016) 49–67,  doi: 10.2147/NSA.S99986.
[144] R. Grössinger, Characterisation of hard magnetic materials,  J. Electr. Eng., 59 (2008) 15–20.
[145] U. Roy, et al., Dye Removal Using Microbial Biosorbents, 253–280, 2018. doi: 10.1007/978-3-319-92162-4_8.
[146] V. Katheresan, J. Kansedo, and S. Y. Lau, Efficiency of various recent wastewater dye removal methods : A review, Journal of Environmental Chemical Engineerin,g 6 (2018) 4676–4697,  doi: 10.1016/j.jece.2018.06.060.