Document Type : Research Paper


Applied Sciences Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.


In this paper, we reported that the annealing at temperatures of 400  and 500 oC in the air for 2 hours led to the formation of rod-like structures of cupric oxide thin films prepared by the chemical bath deposition technique. The structure and the optical properties of the prepared thin films were studied to investigate the role of annealing on the films. The morphology of the as-deposited CuO films is almost structureless. However, the films are converted to rod-like shapes nano-structures after annealing, as confirmed by scanning electron microscopy.  The x-ray analysis showed that the thin films of copper oxide nano-structures have a monoclinic crystallinity preferred in the (110), (002), and (111) directions, and the crystallinity increases after annealing. Furthermore, the bandgap values after annealing are reduced from 2.1 to 1.61 and 1.63 eV as determined by optical analysis utilizing UV–VIS spectroscopy.

Graphical Abstract


  • The chemical bath deposited method was used because its simple, easy, and inexpensive.
  • A rod-like nano-structure of Copper Oxide was prepared.
  • The effect of annealing temperature (400 and 500) was studied.


Main Subjects

[1] Y. Y. Wu, W. C. Tsui, and T. C. Liu, Experimental analysis of tribological properties of lubricating oils with nanoparticle additives, Wear, 262 (2007) 819–825.
[2] C. M. Muiva, K. Maabong, and C. Moditswe, CuO nanostructured thin films synthesised by chemical bath deposition on seed layers deposited by successive ionic layer adsorption and reaction and chemical spray pyrolysis techniques, Thin Solid Films, 616 (2016) 48–54.
[3] Q. Zhang,, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang,  CuO nano-structures: synthesis, characterization, growth mechanisms, fundamental properties, and applications,  Prog. Mater. Sci., 60 (2014) 208-337.
[4] H. B. Oh, H. Ryu, and W. J. Lee, Effects of growth temperature on cupric oxide nanorod photoelectrodes using a modified chemical bath deposition, J. Electrochem. Soc., 161 (2014) H633–H636.
[5] Z. Li, , J. Wang, , N. Wang, S. Yan, W. Liu, Y. Fu,  & Z. Wang,  Hydrothermal synthesis of hierarchically flower-like CuO nano-structures with porous nanosheets for excellent H2S sensing, J. Alloys Compd.,   725 (2017), 1136-1143.
[6] A. Zúñiga, L. Fonseca, J. A. Souza, C. Rivaldo-Gomez, C. D. Pomar, and D. Criado, Anomalous ferromagnetic behavior and size effects in CuO nanowires, J. Magn. Magn. Mater., 471 (2019) 77–81.
[7] L. Arfaoui, F. Janene, S. Kouass, S. Mignard, F. Touati, and H. Dhaouadi, CuO nanosheets: synthesis, characterization, and catalytic performance, Russ. J. Inorg. Chem., 64 (2019) 1687–1696.
[8] K. R. Park, H. B. Cho, J. Lee, Y. Song, W. B. Kim, and Y. H. Choa, Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance, Sensors Actuators, B Chem., 302 (2020) 127179.
[9] M. Makenali and I. Kazeminezhad, Characterization of thin film of CuO  nanorods grown with a chemical deposition method: a study of significance of deposition time, Inorg. Nano-Metal Chem., 50 (2020) 764–769.
[10] S. Anantharaj, H. Sugime, and S. Noda, Ultrafast growth of a Cu(OH)2-CuO nanoneedle array on Cu foil for methanol oxidation electrocatalysis, ACS Appl. Mater. Interfaces, 12 (2020) 27327–27338.
[11] M. Yang and J. He, Fine tuning of the morphology of copper oxide nano-structures and their application in ambient degradation of methylene blue, J. Colloid Interface Sci., 355 (2011) 15–22.
[12] Q. Liu, H. Liu, Y. Liang, Z. Xu, and G. Yin, Large-scale synthesis of single-crystalline CuO nanoplatelets by a hydrothermal process, Mater. Res. Bull., 41 (2006) 697–702.
[13] V. R. Katti, A. K. Debnath, K. P. Muthe, M. Kaur, A. K. Dua, S. C. Gadkari, S. K. Gupta and V. C. Sahni, Mechanism of drifts in H2S sensing properties of SnO2: CuO composite thin film sensors prepared by thermal evaporation, Sensors Actuators, B Chem. 96 (2003) 245-252.
[14] J. T. Chen,  F. Zhang, J. Wang., G. A. Zhang, B. B. Miao, X. Y. Fan, D. Yan and P. X. Yan, CuO nanowires synthesized by thermal oxidation route, J. Alloy. Compd., 454 (2008) 268-273.
[15] J. Zhu, D. Li, H. Chen, X. Yang, L. Lu, and X. Wang, Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method, Mater. Lett., 58 (2004) 3324–3327.
[16] Z. Yang, J. Xu, W. Zhang, A. Liu, and S. Tang, Controlled synthesis of CuO nano-structures by a simple solution route, J. Solid State Chem., 180 (2007) 1390–1396.
[17] M. A. Dar, Q. Ahsanulhaq, Y. S. Kim, J. M. Sohn, W. B. Kim, and H. S. Shin, Versatile synthesis of rectangular shaped nanobat-like CuO nano-structures by hydrothermal method; structural properties and growth mechanism, Appl. Surf. Sci., 255 (2009) 6279–6284.
[18] B. Singh and S. K. Tiwary, CuO Thin Film Prepared by Chemical Bath Deposition Technique : A Review, J. Nanosci. Nanotechnol., 8 (2017) 11–15.
[19] J. wook Ha, J. Oh, H. Choi, H. Ryu, W. J. Lee, and J. S. Bae, Photoelectrochemical properties of Ni-doped CuO nanorods grown using the modified chemical bath deposition method, J. Ind. Eng. Chem., 58 (2018) 38–44.
[20] H. B. Oh, H. Ryu, and W. J. Lee, Effects of copper precursor concentration on the growth of cupric oxide nanorods for photoelectrode using a modified chemical bath deposition method, J. Alloys Compd., 620 (2015) 55–59.
[21] L. Liu, K. Hong, T. Hu, and M. Xu, Synthesis of aligned copper oxide nanorod arrays by a seed mediated hydrothermal method, J. Alloys Compd., 511 (2012) 195–197.
[22] A. S. Dive, K. P. Gattu, N. P. Huse, D. R. Upadhayay, D. M. Phase, and R. B. Sharma, Single step chemical growth of ZnMgS nanorod thin film and its DFT study, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 228 (2018) 91–95.
[23] G. Hodes, Chemical Solution Deposition of Semiconductor Films, Marcel Dekker, Inc., 1st ed, New York, pp. 377, (2002).
[24] B. Sahin and T. Kaya, Enhanced hydration detection properties of nanostructured CuO films by annealing, Microelectron. Eng., 164 (2016) 88–92.
[25] D. Gopalakrishna, K. Vijayalakshmi, and C. Ravidhas, Effect of annealing on the properties of nanostructured CuO thin films for enhanced ethanol sensitivity, Ceram. Int., 39 (2013) 7685–7691.
[26] K. Sahu, S. Choudhary, S. A. Khan, A. Pandey, and S. Mohapatra, Thermal evolution of morphological, structural, optical and photocatalytic properties of CuO thin films, Nano-Structures and Nano-Objects, 17 (2019) 92–102.
[27] K. U. Isah, M.  M.  Bakeko, U. Ahmadu, U. Essang, M. I.  Kimpa, and  J. A. Yabagi, Effect of oxidation temperature on the properties of copper oxide  thin films prepared from thermally oxidised evaporated copper  thin films IOSR J. Appl. Phys., 3 (2013) 61-66. 
[28] J. Y. Park, T. H. Kwon, S. W. Koh, and Y. C. Kang, Annealing temperature dependence on the physicochemical properties of copper oxide thin films, Bull. Korean Chem. Soc., 32 (2011) 1331–1335.
[29] S. Venkataraj, O. Kappertz, C. Liesch, R. Detemple, R. Jayavel, and M. Wuttig, Thermal stability of sputtered zirconium oxide films, Vacuum, 75 (2004) 7–16.
[30] M. Amalina and M. Rusop, Morphological, electrical and optical properties of γ- copper (I) iodide thin films by mist atomization technique, World J. Eng., 9 (2012) 251–256.
[31] R. D. Prabu, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, A. Kathalingam, S. R. Srikumar, and R. Chandramohan, An effect of temperature on structural, optical, photoluminescence and electrical properties of copper oxide thin films deposited by nebulizer spray pyrolysis technique,  Mat. Sci. Semicon. Proc., 74 (2018) 129-135.
[32] A. N. Hussain, K. I. Hassoon, and M. A. Hassan, Effect of annealing on copper oxide thin films and its appli
[33] F. Bayansal, B. Şahin, M. Yüksel, N. Biyikli, H. A. Çetinkara, and H. S. Güder, Influence of coumarin as an additive on CuO nano-structures prepared by successive ionic layer adsorption and reaction (SILAR) method, J. Alloys Compd., 566 (2013) 78–82.
[34] A. Bouich, S. Ullah, H. Ullah, B. Mari, M. E. Touhami, B. Hartiti, & D. S. Santos, Optoelectronic characterization of CuIn(S,Se)2 thin grown by spray pyrolysis method for solar cells, Int. Ren. Sus. E. Conf. (pp. 1-5). IEEE, (2018).