Document Type : Research Paper

Authors

1 Materials Engineering Department., University of Technology-Iraq, Alsina’a Street, 10066 Baghdad, Iraq.

2 College of Materials Engineering, University of Babylon-Iraq, Babylon, Iraq

Abstract

The structural characterization was discussed in the present paper of the pure MgO nanoparticles and the doped (Mg(1-x)pbxO) nanoparticles specimens, where (0 ≤ x ≤ 0.03). The modified Pechini method was used to prepare all the specimens. From (DTA), the convenient temperature of decomposition from Mg(OH)2 to MgO was above 375°C. The structure investigation (XRD) revealed that all the specimens have identical space groups and index well to cubic structures. The obtained crystallite size by Scherrer''s equation was increased with increasing the fraction of doping except for (Mg0.97Pb0.03O) due to the formation of PbO oxide. The molecular vibration by FTIR demonstrated that all the pure and doped specimens have the same framework. As the incorporation of Pb2+ ions increases, the bands get broader, and the intensities increase in the ranging 800-400 cm-1 due to vibrations of O-Mg and O-Pb bands, respectively.

Graphical Abstract

Highlights

  • The structure revealed that all the specimens have identical space groups and index well to a cubic structure.
  •   Crystallite size was increased with increasing the fraction of doping except for (Mg0.97Pb0.03O) due to the formation of PbO oxide.
  • The molecular vibration of the pure and doped specimens has the same framework. However, as the incorporation of Pb2+ ions increased, the bands got broader, and the intensities increased in the range of 800-400 cm-1 due to vibrations of O-Mg and O-Pb bands, respectively.

Keywords

Main Subjects

[1] H. Greim, Constitution and procedures of the commission for the investigation of health hazards of chemical compounds in the work area, WILEY, Germany, Report 52 (2016).
[2] W. Z. Lin. Characterization of nanophase materials, Wiley-VCH, 1st ed, Germany, (2000).
[3] T. Iqbal, S. Tufail, and S. Ghazal, Synthesis of silver, chromium, manganese, tin and iron nano particles by different techniques, Int. J. Nanosci. Nanotechnol., 13 (2017) 19–52.
[4] T. I. Shabatina, O. I. Vernaya, V. P. Shabatin, and M. Y. Melnikov, Magnetic nanoparticles for biomedical purposes: modern trends and prospects, Magnetochemistry, 6 (2020), doi: 10.3390/magnetochemistry6030030.
[5] S. Thomas, B. S. P. Harshita, P. Mishra, and S. Talegaonkar, Ceramic nanoparticles: fabrication methods and applications in drug delivery, Curr. Pharm. Des., 21 (2015) 6165–6188, doi: 10.2174/1381612821666151027153246.
[6] A. Tarutin, N. Danilov, J. Lyagaeva, and D. Medvedev, One-step fabrication of protonic ceramic fuel cells using a convenient tape calendering method, Appl. Sci., 10 (2020), doi: 10.3390/app10072481.
[7] S. Wang and L. Gao. Laser-driven nanomaterials and laser-enabled nanofabrication for industrial applications, Industrial Applications of Nanomaterials, Elsevier, (2019) 181-203.
[8] C. Wang, Z. hai Shi, L. Peng, W. min He, B. liang Li, and K. zhi Li, Preparation of carbon foam-loaded nano-TiO2 photocatalyst and its degradation on methyl orange, Surfaces and Interfaces, 7 (2017) 116–124, doi: 10.1016/j.surfin.2017.03.007.
[9] K. Harun, N. Mansor, Z. A. Ahmad, and A. A. Mohamad, Electronic properties of zno nanoparticles synthesized by sol-gel method: a lda+u calculation and experimental study, Procedia Chem., 19 (2016) 125–132, doi: 10.1016/j.proche.2016.03.125.
[10] S. Tumanski, Handbook of magnetic measurements, CRC press, Series in Sensors, USA (2016).
[11] Z. X. Tang and B. F. Lv, MgO nanoparticles as antibacterial agent: Preparation and activity, Brazilian J. Chem. Eng., 31 (2014) 591–601, doi: 10.1590/0104-6632.20140313s00002813.
[12] N. A. Hamid, N. F. Shamsudin, and K. W. Seec, Superconducting properties and mechanical strength of MgO fibres reinforced bulk Bi-2212 superconductor ceramics, Mater. Res. Innov., 13 (2009) 379–381, doi: 10.1179/143307509X441612.
[13] Z. X. Tang, X. J. Fang, Z. L. Zhang, T. Zhou, X. Y. Zhang, and L. E. Shi, Nanosize MgO as antibacterial agent: Preparation and characteristics, Brazilian J. Chem. Eng., 29 (2012) 775–781, doi: 10.1590/S0104-66322012000400009.
[14] A. Dahmardeh and A. M. Davarpanah, Short communication investigation on influences of synthesis methods on the magnetic properties of trimetallic nanoparticles of iron-cobalt- manganese supported by magnesium oxide, 11 (2015) 249–256.
[15] T. Thangeeswari, M. Priya, and J. Velmurugan, Enhancement in the optical and magnetic properties of ZnO:Co implanted by Gd3+ nanoparticles, J. Mater. Sci. Mater. Electron., 26 (2015) 2436–2444, doi: 10.1007/s10854-015-2703-2.
[16] O. Elimelech, J. Liu, A. M. Plonka, A. I. Frenkel, and U. Banin, Size dependence of doping by a vacancy formation reaction in copper sulfide nanocrystals”, Angew. Chemie, 129 (2017) 10471–10476, doi: 10.1002/ange.201702673.
[17] R. John and R. Rajakumari, Synthesis and characterization of rare earth ion doped nano ZnO, Nano-Micro Lett., 4 (2012) 65–72, doi: 10.1007/bf03353694.
[18] D. Misra and S. K. Yadav, Prediction of site preference of implanted transition metal dopants in rock-salt oxides, Sci. Rep., 9, (2019), doi: 10.1038/s41598-019-49011-5.
[19] S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, Doping semiconductor nanocrystals, Nature, 436, (2005) 91–94, doi: 10.1038/nature03832.
[20] U. Sharma and P. Jeevanandam, Synthesis of Zn2+-doped MgO nanoparticles using substituted brucite precursors and studies on their optical properties, J. Sol-Gel Sci. Technol., 75 (2015) 635–648, doi: 10.1007/s10971-015-3734-0.
[21] V. Vasanthi, M. Kottaisamy, K. Anitha, and V. Ramakrishnan, Near UV excitable yellow light emitting Zn doped MgO for WLED application, Superlattices Microstruct., 106 (2017) 174–183, doi: 10.1016/j.spmi.2017.03.050.
[22] U. Sharma and P. Jeevanandam, Layered double hydroxides as precursors to Ti4+ doped MgO nanoparticles with tunable band gap, J. Nanosci. Nanotechnol., 18, (2018) 264–278, doi: 10.1166/jnn.2018.14557.
[23] J. W. Lee and J. H. Ko, Defect states of transition metal-doped MgO for secondary electron emission of plasma display panel, J. Inf. Disp., 15 (2014) 157–161, doi: 10.1080/15980316.2014.955140.
[24] S. Azzaza, M. El-Hilo, S. Narayanan, J. Judith Vijaya, N. Mamouni, A. Benyoussef, A. El Kenz, and M. Bououdina. Structural, optical and magnetic characterizations of Mn-doped MgO nanoparticles, Materials Chemistry and Physics, 143 (2014) 1500-1507.
[25] G. T. Fox, M. W. Wolfmeyer, J. R. Dillinger, and D. L. Huber, Magnetic field dependence of the thermal conductivity of doped MgO, Phys. Rev., 165 (1968) 898–901, doi: 10.1103/PhysRev.165.898.
[26] C. Yuncheng, D. Wu, X. Zhu, W. Wang, F. Tan, J. Chen, X. Qiao, and X.O. Qiu. Sol-gel preparation of Ag-doped MgO nanoparticles with high efficiency for bacterial inactivation, Ceramics International 43 (2017) 1066-1072, doi: 10.1016/j.ceramint.2016.10.041.
[27] U. Sharma and P. Jeevanandam, Synthesis of Zn2+-doped MgO nanoparticles using substituted brucite precursors and studies on their optical properties, J. Sol-Gel Sci. Technol., 75 (2015) 635–648, doi: 10.1007/s10971-015-3734-0.
[28] B. Kim and H. Lee, Valence state and ionic conduction in Mn-doped MgO partially stabilized zirconia, J. Am. Ceram. Soc., 101 (2018) 1790–1795, doi: 10.1111/jace.15333.
[29] L. Peng, Y. Wang, Z. Wang, and Q. Dong, Multiplesite structure and photoluminescence properties of Eu3+ doped MgO nanocrystals, Appl. Phys. A Mater. Sci. Process., 102 (2011) 387–392, doi: 10.1007/s00339-010-6027-z.
[30] M. Sadeghi, and M. Hosseini. Nucleophilic chemistry of the synthesized magnesium oxide (magnesia) nanoparticles via microwave sol-gel process for removal of sulfurous pollutant, Int J BioInorg Hybd Nanomat, 1 (2012) 175-182.
[31] B. Zaidi, S. Belghit, M. S. Ullah, B. Hadjoudja, A. Guerraoui, S. Gagui, N. Houaidji, B. Chouial, and C. Shekhar, Investigation of MgO powders synthesized by liquid-phase method, Metallofiz. Noveishie Tekhnol, 41 (2019) 1121—1126, doi: 10.15407/mfint.41.08.1121.
[32] K. Ganapathi Rao, C. Ashok, K. Venkateswara Rao, and C. Shilpa Chakra, Structural properties of MgO nanoparticles: synthesized by co-precipitation technique, Int. J. Sci. Res., (2013) 43–46.
[33] M. Y. Nassar, T. Y. Mohamed, I. S. Ahmed, and I. Samir, MgO nanostructure via a sol-gel combustion synthesis method using different fuels: An efficient nano-adsorbent for the removal of some anionic textile dyes, J. Mol. Liq., 225 (2017) 730–740, doi: 10.1016/j.molliq.2016.10.135.
[34] M. R. Mohammad Shafiee, M. Kargar, and M. Ghashang, Characterization and low-cost, green synthesis of Zn2+ doped MgO nanoparticles, Green Process. Synth., 7 (2018) 248–254, doi: 10.1515/gps-2016-0219.
[35] W. C. Li, A. H. Lu, C. Weidenthaler, and F. Schüth, Hard-templating pathway to create mesoporous magnesium oxide, Chem. Mater., 16 (2004) 5676–5681, doi: 10.1021/cm048759n.
[36] P. Jeevanandam and K. J. Klabunde, A study on adsorption of surfactant molecules on magnesium oxide nanocrystals prepared by an aerogel route, Langmuir, 18 (2002) 5309–5313, doi: 10.1021/la0200921.
[37] C. Y. Tai, C. Te Tai, M. H. Chang, and H. S. Liu, Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor, Ind. Eng. Chem. Res., 46 (2007) 5536–5541, doi: 10.1021/ie060869b.
[38] S. Ghorbani, R. S. Razavi, M. R. Loghman-Estarki, and A. Alhaji, Development of MgO–Y2O3 composite nanopowder by pechini Sol–Gel method: effect of synthesis parameters on morphology, particle size, and phase distribution, J. Clust. Sci., 28 (2017) 1523–1539, doi: 10.1007/s10876-017-1162-8.
[39] M. P. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, US Patent No. 3330697, (1967).
[40] M. A. Zalapa-Garibay, A. Arizmendi-Moraquecho, and S. Y. Reyes-López, Low temperature synthesis of alpha alumina platelets and acicular mullite in MgO-Al2O3-SiO2 system, J. Ceram. Sci. Technol., 10 (2019) 9–18, doi: 10.4416/JCST2018-00043.
[41] V. Karthikeyan, S. Dhanapandian, and C. Manoharan, Characterization and antibacterial behavior of MgO-PEG nanoparticles synthesized via co-precipitation method, Int. Lett. Chem. Phys. Astron., 70 (2016) 33–41, doi: 10.18052/www.scipress.com/ilcpa.70.33.
[42] H. Dong, C. Unluer, E. H. Yang, and A. Al-Tabbaa, Recovery of reactive MgO from reject brine via the addition of NaOH, Desalination, 429 (2018) 88–95, doi: 10.1016/j.desal.2017.12.021.
[43] K. G. Rao, C. H. Ashok, K. V. Rao, and C. H. S. Chakra, Structural properties of MgO nanoparticles : synthesized by co-precipitation technique, December (2015).
[44] I. A. Najem, S. J. Edrees, and F. A. Rasin. Structural and magnetic characterisations of Pb-doped MgO nanoparticles by a modified pechini method, IOP Conference Series: Materials Science and Engineering, 987 (2020) 012027, doi: 10.1088/1757-899X/987/1/012027.
[45] A. Ansari, A. Ali, M. Asif, and Shamsuzzaman, Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines, New J. Chem., 42 (2018) 184–197, doi: 10.1039/c7nj03742b.
[46] A. Das, A. C. Mandal, S. Roy, and P. M. G. Nambissan, Internal defect structure of calcium doped magnesium oxide nanoparticles studied by positron annihilation spectroscopy, AIP Adv., 8 (2018), doi: 10.1063/1.5001105.
[47] H. Cui, X. Wu, D. Zhang, J. Zhang, H. Xiao, and Y. Chen, Thermotolerance and antibacterial properties of MgO-triclosan nanocomposites, Procedia Eng., 102 (2015) 410–416, doi: 10.1016/j.proeng.2015.01.175.
[48] A. Ansari, A. Ali, M. Asif, and Shamsuzzaman, Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines, New J. Chem., 42 (2018) 184–197, doi: 10.1039/c7nj03742b.
[49] W. C. Wee, Y. S. Chan, J. Jeevanandam, K. Pal, M. Bechelany, M. Abd Elkodous, and G. S. El-Sayyad, Response surface methodology optimization of mono-dispersed MgO nanoparticles fabricated by ultrasonic-assisted sol–gel method for outstanding antimicrobial and antibiofilm activities, Journal of Cluster Science, 31 (2020) 367-389, doi: 10.1007/s10876-019-01651-3.
[50] S. Manikandan and K. S. Rajan, Rapid synthesis of MgO nanoparticles & their utilization for formulation of a propylene glycol based nanofluid with superior transport properties, RSC Adv., 4 (2014) 51830–51837, doi: 10.1039/c4ra09173f.
[51] R. Dobrucka, Synthesis of MgO nanoparticles using artemisia abrotanum herba extract and their antioxidant and photocatalytic properties, Iran. J. Sci. Technol. Trans. A Sci., 42 (2018) 547–555, doi: 10.1007/s40995-016-0076-x.
[52] S. Yousefi and B. Ghasemi, Precipitator concentration-dependent opto-structural properties of MgO nanoparticles fabricated using natural brine, SN Appl. Sci., 2 (2020), doi: 10.1007/s42452-020-2645-z.
[53] N. C. S. Selvam, R. T. Kumar, L. J. Kennedy, and J. J. Vijaya, Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures, J. Alloys Compd., 509 (2011) 9809–9815, doi: 10.1016/j.jallcom.2011.08.032.
[54] J. L. Boldu, E. Muñoz, O. Novaro, T. Lopez, and R. Gomez, Crystalline structure and morphology of the phases in MgO, TiO2 and ZrO2 prepared by the sol-gel technique, MRS Online Proceedings Library (OPL) 405, (1995), doi: 10.1557/proc-405-523.
[55] N. Jamil, M. Mehmood, A. Lateef, R. Nazir, and N. Ahsan, MgO nanoparticles for the removal of reactive dyes from wastewater, NSTI Adv. Mater. - TechConnect Briefs, 1 (2015) 353–356.
[56] S. Elawam, W. Morsi, H. Abou-Shady, and O. Guirguis, Characterizations of beta-lead oxide ‘massicot’ nano-particles, Br. J. Appl. Sci. Technol., 17 (2016) 1–10, doi: 10.9734/bjast/2016/28143.
[57] G. M. Montserrat, Synthesis and characterization of optical nanocrystals and nanostructures. An approach to transparent laser nanoceramics, PhD Thesis, Universitat Rovirai i Virgili, Tarragona, (2011).