[1] H. Greim, Constitution and procedures of the commission for the investigation of health hazards of chemical compounds in the work area, WILEY, Germany, Report 52 (2016).
[2] W. Z. Lin. Characterization of nanophase materials, Wiley-VCH, 1st ed, Germany, (2000).
[3] T. Iqbal, S. Tufail, and S. Ghazal, Synthesis of silver, chromium, manganese, tin and iron nano particles by different techniques, Int. J. Nanosci. Nanotechnol., 13 (2017) 19–52.
[4] T. I. Shabatina, O. I. Vernaya, V. P. Shabatin, and M. Y. Melnikov, Magnetic nanoparticles for biomedical purposes: modern trends and prospects, Magnetochemistry, 6 (2020), doi: 10.3390/magnetochemistry6030030.
[5] S. Thomas, B. S. P. Harshita, P. Mishra, and S. Talegaonkar, Ceramic nanoparticles: fabrication methods and applications in drug delivery, Curr. Pharm. Des., 21 (2015) 6165–6188, doi: 10.2174/1381612821666151027153246.
[6] A. Tarutin, N. Danilov, J. Lyagaeva, and D. Medvedev, One-step fabrication of protonic ceramic fuel cells using a convenient tape calendering method, Appl. Sci., 10 (2020), doi: 10.3390/app10072481.
[7] S. Wang and L. Gao. Laser-driven nanomaterials and laser-enabled nanofabrication for industrial applications, Industrial Applications of Nanomaterials, Elsevier, (2019) 181-203.
[8] C. Wang, Z. hai Shi, L. Peng, W. min He, B. liang Li, and K. zhi Li, Preparation of carbon foam-loaded nano-TiO2 photocatalyst and its degradation on methyl orange, Surfaces and Interfaces, 7 (2017) 116–124, doi: 10.1016/j.surfin.2017.03.007.
[9] K. Harun, N. Mansor, Z. A. Ahmad, and A. A. Mohamad, Electronic properties of zno nanoparticles synthesized by sol-gel method: a lda+u calculation and experimental study, Procedia Chem., 19 (2016) 125–132, doi: 10.1016/j.proche.2016.03.125.
[10] S. Tumanski, Handbook of magnetic measurements, CRC press, Series in Sensors, USA (2016).
[11] Z. X. Tang and B. F. Lv, MgO nanoparticles as antibacterial agent: Preparation and activity, Brazilian J. Chem. Eng., 31 (2014) 591–601, doi: 10.1590/0104-6632.20140313s00002813.
[12] N. A. Hamid, N. F. Shamsudin, and K. W. Seec, Superconducting properties and mechanical strength of MgO fibres reinforced bulk Bi-2212 superconductor ceramics, Mater. Res. Innov., 13 (2009) 379–381, doi: 10.1179/143307509X441612.
[13] Z. X. Tang, X. J. Fang, Z. L. Zhang, T. Zhou, X. Y. Zhang, and L. E. Shi, Nanosize MgO as antibacterial agent: Preparation and characteristics, Brazilian J. Chem. Eng., 29 (2012) 775–781, doi: 10.1590/S0104-66322012000400009.
[14] A. Dahmardeh and A. M. Davarpanah, Short communication investigation on influences of synthesis methods on the magnetic properties of trimetallic nanoparticles of iron-cobalt- manganese supported by magnesium oxide, 11 (2015) 249–256.
[15] T. Thangeeswari, M. Priya, and J. Velmurugan, Enhancement in the optical and magnetic properties of ZnO:Co implanted by Gd3+ nanoparticles, J. Mater. Sci. Mater. Electron., 26 (2015) 2436–2444, doi: 10.1007/s10854-015-2703-2.
[16] O. Elimelech, J. Liu, A. M. Plonka, A. I. Frenkel, and U. Banin, Size dependence of doping by a vacancy formation reaction in copper sulfide nanocrystals”, Angew. Chemie, 129 (2017) 10471–10476, doi: 10.1002/ange.201702673.
[17] R. John and R. Rajakumari, Synthesis and characterization of rare earth ion doped nano ZnO, Nano-Micro Lett., 4 (2012) 65–72, doi: 10.1007/bf03353694.
[18] D. Misra and S. K. Yadav, Prediction of site preference of implanted transition metal dopants in rock-salt oxides, Sci. Rep., 9, (2019), doi: 10.1038/s41598-019-49011-5.
[19] S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, Doping semiconductor nanocrystals, Nature, 436, (2005) 91–94, doi: 10.1038/nature03832.
[20] U. Sharma and P. Jeevanandam, Synthesis of Zn2+-doped MgO nanoparticles using substituted brucite precursors and studies on their optical properties, J. Sol-Gel Sci. Technol., 75 (2015) 635–648, doi: 10.1007/s10971-015-3734-0.
[21] V. Vasanthi, M. Kottaisamy, K. Anitha, and V. Ramakrishnan, Near UV excitable yellow light emitting Zn doped MgO for WLED application, Superlattices Microstruct., 106 (2017) 174–183, doi: 10.1016/j.spmi.2017.03.050.
[22] U. Sharma and P. Jeevanandam, Layered double hydroxides as precursors to Ti4+ doped MgO nanoparticles with tunable band gap, J. Nanosci. Nanotechnol., 18, (2018) 264–278, doi: 10.1166/jnn.2018.14557.
[23] J. W. Lee and J. H. Ko, Defect states of transition metal-doped MgO for secondary electron emission of plasma display panel, J. Inf. Disp., 15 (2014) 157–161, doi: 10.1080/15980316.2014.955140.
[24] S. Azzaza, M. El-Hilo, S. Narayanan, J. Judith Vijaya, N. Mamouni, A. Benyoussef, A. El Kenz, and M. Bououdina. Structural, optical and magnetic characterizations of Mn-doped MgO nanoparticles, Materials Chemistry and Physics, 143 (2014) 1500-1507.
[25] G. T. Fox, M. W. Wolfmeyer, J. R. Dillinger, and D. L. Huber, Magnetic field dependence of the thermal conductivity of doped MgO, Phys. Rev., 165 (1968) 898–901, doi: 10.1103/PhysRev.165.898.
[26] C. Yuncheng, D. Wu, X. Zhu, W. Wang, F. Tan, J. Chen, X. Qiao, and X.O. Qiu. Sol-gel preparation of Ag-doped MgO nanoparticles with high efficiency for bacterial inactivation, Ceramics International 43 (2017) 1066-1072, doi: 10.1016/j.ceramint.2016.10.041.
[27] U. Sharma and P. Jeevanandam, Synthesis of Zn2+-doped MgO nanoparticles using substituted brucite precursors and studies on their optical properties, J. Sol-Gel Sci. Technol., 75 (2015) 635–648, doi: 10.1007/s10971-015-3734-0.
[28] B. Kim and H. Lee, Valence state and ionic conduction in Mn-doped MgO partially stabilized zirconia, J. Am. Ceram. Soc., 101 (2018) 1790–1795, doi: 10.1111/jace.15333.
[29] L. Peng, Y. Wang, Z. Wang, and Q. Dong, Multiplesite structure and photoluminescence properties of Eu3+ doped MgO nanocrystals, Appl. Phys. A Mater. Sci. Process., 102 (2011) 387–392, doi: 10.1007/s00339-010-6027-z.
[30] M. Sadeghi, and M. Hosseini. Nucleophilic chemistry of the synthesized magnesium oxide (magnesia) nanoparticles via microwave sol-gel process for removal of sulfurous pollutant, Int J BioInorg Hybd Nanomat, 1 (2012) 175-182.
[31] B. Zaidi, S. Belghit, M. S. Ullah, B. Hadjoudja, A. Guerraoui, S. Gagui, N. Houaidji, B. Chouial, and C. Shekhar, Investigation of MgO powders synthesized by liquid-phase method, Metallofiz. Noveishie Tekhnol, 41 (2019) 1121—1126, doi: 10.15407/mfint.41.08.1121.
[32] K. Ganapathi Rao, C. Ashok, K. Venkateswara Rao, and C. Shilpa Chakra, Structural properties of MgO nanoparticles: synthesized by co-precipitation technique, Int. J. Sci. Res., (2013) 43–46.
[33] M. Y. Nassar, T. Y. Mohamed, I. S. Ahmed, and I. Samir, MgO nanostructure via a sol-gel combustion synthesis method using different fuels: An efficient nano-adsorbent for the removal of some anionic textile dyes, J. Mol. Liq., 225 (2017) 730–740, doi: 10.1016/j.molliq.2016.10.135.
[34] M. R. Mohammad Shafiee, M. Kargar, and M. Ghashang, Characterization and low-cost, green synthesis of Zn2+ doped MgO nanoparticles, Green Process. Synth., 7 (2018) 248–254, doi: 10.1515/gps-2016-0219.
[35] W. C. Li, A. H. Lu, C. Weidenthaler, and F. Schüth, Hard-templating pathway to create mesoporous magnesium oxide, Chem. Mater., 16 (2004) 5676–5681, doi: 10.1021/cm048759n.
[36] P. Jeevanandam and K. J. Klabunde, A study on adsorption of surfactant molecules on magnesium oxide nanocrystals prepared by an aerogel route, Langmuir, 18 (2002) 5309–5313, doi: 10.1021/la0200921.
[37] C. Y. Tai, C. Te Tai, M. H. Chang, and H. S. Liu, Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor, Ind. Eng. Chem. Res., 46 (2007) 5536–5541, doi: 10.1021/ie060869b.
[38] S. Ghorbani, R. S. Razavi, M. R. Loghman-Estarki, and A. Alhaji, Development of MgO–Y2O3 composite nanopowder by pechini Sol–Gel method: effect of synthesis parameters on morphology, particle size, and phase distribution, J. Clust. Sci., 28 (2017) 1523–1539, doi: 10.1007/s10876-017-1162-8.
[39] M. P. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, US Patent No. 3330697, (1967).
[40] M. A. Zalapa-Garibay, A. Arizmendi-Moraquecho, and S. Y. Reyes-López, Low temperature synthesis of alpha alumina platelets and acicular mullite in MgO-Al2O3-SiO2 system, J. Ceram. Sci. Technol., 10 (2019) 9–18, doi: 10.4416/JCST2018-00043.
[41] V. Karthikeyan, S. Dhanapandian, and C. Manoharan, Characterization and antibacterial behavior of MgO-PEG nanoparticles synthesized via co-precipitation method, Int. Lett. Chem. Phys. Astron., 70 (2016) 33–41, doi: 10.18052/www.scipress.com/ilcpa.70.33.
[42] H. Dong, C. Unluer, E. H. Yang, and A. Al-Tabbaa, Recovery of reactive MgO from reject brine via the addition of NaOH, Desalination, 429 (2018) 88–95, doi: 10.1016/j.desal.2017.12.021.
[43] K. G. Rao, C. H. Ashok, K. V. Rao, and C. H. S. Chakra, Structural properties of MgO nanoparticles : synthesized by co-precipitation technique, December (2015).
[44] I. A. Najem, S. J. Edrees, and F. A. Rasin. Structural and magnetic characterisations of Pb-doped MgO nanoparticles by a modified pechini method, IOP Conference Series: Materials Science and Engineering, 987 (2020) 012027, doi: 10.1088/1757-899X/987/1/012027.
[45] A. Ansari, A. Ali, M. Asif, and Shamsuzzaman, Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines, New J. Chem., 42 (2018) 184–197, doi: 10.1039/c7nj03742b.
[46] A. Das, A. C. Mandal, S. Roy, and P. M. G. Nambissan, Internal defect structure of calcium doped magnesium oxide nanoparticles studied by positron annihilation spectroscopy, AIP Adv., 8 (2018), doi: 10.1063/1.5001105.
[47] H. Cui, X. Wu, D. Zhang, J. Zhang, H. Xiao, and Y. Chen, Thermotolerance and antibacterial properties of MgO-triclosan nanocomposites, Procedia Eng., 102 (2015) 410–416, doi: 10.1016/j.proeng.2015.01.175.
[48] A. Ansari, A. Ali, M. Asif, and Shamsuzzaman, Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines, New J. Chem., 42 (2018) 184–197, doi: 10.1039/c7nj03742b.
[49] W. C. Wee, Y. S. Chan, J. Jeevanandam, K. Pal, M. Bechelany, M. Abd Elkodous, and G. S. El-Sayyad, Response surface methodology optimization of mono-dispersed MgO nanoparticles fabricated by ultrasonic-assisted sol–gel method for outstanding antimicrobial and antibiofilm activities, Journal of Cluster Science, 31 (2020) 367-389, doi: 10.1007/s10876-019-01651-3.
[50] S. Manikandan and K. S. Rajan, Rapid synthesis of MgO nanoparticles & their utilization for formulation of a propylene glycol based nanofluid with superior transport properties, RSC Adv., 4 (2014) 51830–51837, doi: 10.1039/c4ra09173f.
[51] R. Dobrucka, Synthesis of MgO nanoparticles using artemisia abrotanum herba extract and their antioxidant and photocatalytic properties, Iran. J. Sci. Technol. Trans. A Sci., 42 (2018) 547–555, doi: 10.1007/s40995-016-0076-x.
[52] S. Yousefi and B. Ghasemi, Precipitator concentration-dependent opto-structural properties of MgO nanoparticles fabricated using natural brine, SN Appl. Sci., 2 (2020), doi: 10.1007/s42452-020-2645-z.
[53] N. C. S. Selvam, R. T. Kumar, L. J. Kennedy, and J. J. Vijaya, Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures, J. Alloys Compd., 509 (2011) 9809–9815, doi: 10.1016/j.jallcom.2011.08.032.
[54] J. L. Boldu, E. Muñoz, O. Novaro, T. Lopez, and R. Gomez, Crystalline structure and morphology of the phases in MgO, TiO2 and ZrO2 prepared by the sol-gel technique, MRS Online Proceedings Library (OPL) 405, (1995), doi: 10.1557/proc-405-523.
[55] N. Jamil, M. Mehmood, A. Lateef, R. Nazir, and N. Ahsan, MgO nanoparticles for the removal of reactive dyes from wastewater, NSTI Adv. Mater. - TechConnect Briefs, 1 (2015) 353–356.
[56] S. Elawam, W. Morsi, H. Abou-Shady, and O. Guirguis, Characterizations of beta-lead oxide ‘massicot’ nano-particles, Br. J. Appl. Sci. Technol., 17 (2016) 1–10, doi: 10.9734/bjast/2016/28143.
[57] G. M. Montserrat, Synthesis and characterization of optical nanocrystals and nanostructures. An approach to transparent laser nanoceramics, PhD Thesis, Universitat Rovirai i Virgili, Tarragona, (2011).