Document Type : Research Paper

Authors

1 Materials Engineering Dept., University of Technology, Baghdad-Iraq, Alsina'a Street, 10066 Baghdad, Iraq.

2 Building & Construction Engineering Dept., Al-Mustaqbal University College, Babylon, Iraq.

Abstract

Copper oxide (CuO) and zinc oxide (ZnO) are two of the most promising oxides under development right now. The sol-gel technique was used to make Nano composite particles NCPs of ZnO-CuO. The copper (II) nitrate rehydrate 0.1M and zinc nitrate hex hydrate 0.1M liquids were mixed in a 1:1 ratio, and the gel was formed at 80 °C, then dried and calcined for various times 500 °C (3, 5, and 7 hours). Particle size analyzer (PZA), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and apparent density were used to characterize the CuO/MgO particles. The x-ray diffraction results showed that the phases of the composite particles were pure. FESEM scans, on the other hand, revealed nanoparticles incorporated in the ZnO-CuO matrix with particle sizes ranging from 60.76 to 145.1 nm. The density of the aforesaid samples was 0.1382, 0.1418, and 0.1469 g/cm3 in that order, increasing as the calcined duration increased. This promotes crystal formation, and CuO/MgO has strong catalytic activity for advanced applications.

Graphical Abstract

Highlights

  • The sol-gel technique was used to make Nano composite particles NCPs of ZnO-CuO.
  •     FESEM scans revealed nanoparticles incorporated in the ZnO-CuO matrix with particle sizes ranging from 60.76 to 145.1 nm.
  • The density of the aforesaid samples was 0.1382, 0.1418, and 0.1469 g/cm3 in that order, increasing as the calcined duration increased.
  •  This promotes crystal formation, and CuO/MgO has strong catalytic activity for advanced applications.

Keywords

Main Subjects

[1] D.M. Fernandes, R. Silva, A.A.Winkler Hechenleitner, E. Radovanovic, M.A. Custodian Melon, and E.A. Gomez Pineda, Synthesis and characterization of ZnO, CuO and a mixed Zn and Cu oxide, J. Materials Chemistry and Physics , 115 (2009) 110–115.
[2] J. D. Wright‏, and A. N.J.M. Sommerdijk, Sol-Gel materials: chemistry and applications, CRC Press, Boca Raton, 1st edition , USA , 2001.
[3] G. Bodurov, T. V and K. Gesheva, Technology and application of transition metal oxide of W-V-O as functional layers and NiO thin films as counter electrode material in electro chromic smart windows, Phys. Procedia , 46 (2013) 149–58.
[4] D. Guo, G.Liu, X .Li, X .Tang, J.Zhang, X .Zhu, and S. Jiang, Transition metal oxide hierarchical nanotubes for energy applications Nanotechnology, J. Bionanosci, 9 (2015) 325-329.
[5] I. Hasa, D .Buchholz, S. Passerini and J. Hassoun, A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery, ACS Appl. Mater. Interfaces, 7 (2015) 5206–5212.
[6] Z. He, L. Dai, S .Liu, L .Wang and C .Li, Mn3O4 anchored on carbon nanotubes as an electrode reaction catalyst of V (IV)/V(V) couple for vanadium redox flow batteries Electrochim, J. Acta, 176 (2015) 1434–40.
[7] V. Subramanian, S.C. Hall, S. P. Rambabu, Mesoporous anhydrous RuO2 as a super capacitor electrode material, J. Solid State Ion, 175 (2004) 511–5.
[8] A. D. Manasrah,   I. W. Almanassra,   N. N. Marei,   U.A. Al-Mubaiyedh,  T. Laoui  and  M. A. Atieh, Surface modification of carbon nanotubes with copper oxide nanoparticles for heat transfer enhancement  of Nano fluids, Journal of  RSC Adv., 8 (2018) 1791–802.
[9] S .Chaudhary, D .Rohilla, V.Umar, K.N. Shanavas, Synthesis and characterizations of luminescent copper oxide nanoparticles: toxicological profiling and sensing applications Ceram, Int. 45 (2019) 15025–35.
[10] S. El. Hassan , A. Fouda , A. A. Radwan , S. S. Salem , M.G. Barghoth , M.A Awad , A.M Abdo , and M. S .El-Gamal, Entophytic actinomycetes Streptomyces sap mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications, J. Biol. Inorg. Chem. 24 (2019) 377–93.
[11] R. Kanwar, R. Bhar, and S. Mehta, Designed meso-macroporous silica framework impregnated with copper oxide nanoparticles for enhanced catalytic performance, J. Chem Cat Chem , 10 (2018) 2087–95.
[12] M.A. Kumar, N. A. Kumar, D. A.Kumar, and P. Debabrata, Microwave-assisted solvothermal synthesis of cupric oxide nanostructures for high-performance super capacitor, J. Phys. Chem.C, 122 (2018) 11249–61.
[13] A. Ch. Nwanya, M. M. Ndipingwi, N. Mayedwa,L.C. Razanamahandry,Ch. O. Ikpo,T Waryo,S.K.O. Ntwampe, E. Malenga, E. Fosso-Kankeu, F. I. Ezema, E. I. Iwuoha, and M. Maaza, Maize (Zea mays L.) Fresh husk mediated biosynthesis of copper oxides: Potentials for pseudo capacitive energy storage, J. Electro him Acta, 30 (2019) 436–48.
[14] R. D Preeth, M .Shairam, N .Suganya, R .Hootan, R .Kartik, K .Pierre, and S. Rajalakshmi, Green synthesis of copper oxide nanoparticles using sinapic acid: an underpinning step towards antiangiogenic therapy for breast cancer, J. Biol. Inorg. Chem , 24 (2019) 633–45.
[15] D.Renuga, J .Jeyasundari,A.S. S. Athithan andY. B. A. Jacob, Synthesis and characterization of copper oxide nanoparticles using Brassica oleracea var. italic extract for its antifungal application, J. Mater. Res. Express, 7 (2020) 1.
[16] L. Theodore, Nanotechnology: basic calculations for engineers and scientists, IEEE Electrical Insulation Magazine J., 22 (2006) 50–51.
[17] [17] X. Wang, J. Lu, M. Xu, and B. Xing, Sorption of pyrene by regular and nanoscaled metal oxide particles: influence of adsorbed organic matter, J.Environ. Sci. Technol, 42 (2008) 7267–7272.
[18] C. Dagdeviren, S. W. Hwang, Y. Su, S. Kim, H. Cheng, O. Gur, R. Haney, F. G. Omenetto, Y. Huang, and J. A. Rogers, Transient biocompatible electronics and energy harvesters based on ZnO, J. Engineering Science and Mechanics, Institute for Computational and Data Sciences  (ICDS) , 9 (2013) 3398–3404.
[19] D. Liu, W. Wu, Y. Qiu, S. Yang, Si Xiao, Qu. Wang, Lu Ding, and J. Wang, Surface functionalization of ZnO Nano tetrapod's with photoactive and electro active organic monolayers, J. Langmuir,  24 (2008) 5052–5059.
[20] G. Bisht, and S. Rayamajhi, ZnO nanoparticles: a promising anti-cancer agent, J. Nano biomedicine (Rij), (2016) 9–20.
[21] S. Sonia, L J. Kumari, H. Ruckmanib, K. Sivakumara, Antimicrobial and antioxidant potentials of biosynthesized colloidal zinc oxide nanoparticles for a fortified cold cream formulation: a potent Nano cosmeceutical application, J. Mater. Sci. Eng. C Mater. Biol. Appl. 79 (2017) 581–589.
[22] A. H. Waleed , K. H. Abbas, A. S. Hayder, Ceramic filled polymer matrix composite used for bio-medical application, J. Engineering and Technology,. 29 (2011) 1766-1767.
[23] S. Kuriakose, D. K. Avasthi, S. Mohapatra, Effects of swift heavy ion irradiation on structural, optical and photo catalytic properties of ZnO–CuO Nano composites prepared by carbothermal evaporation method, Beilstein J. Nanotechnology, 6 (2015) 928–937.
[24] R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, Enhanced photo catalytic activity of ZnO/CuO Nano composite for the degradation of textile dye on visible light illumination, J. Mater. Sci. Eng., 33 (2013) 91–98.
[25] T. A. Saleh, G. Fadillah, and O. A. Saputra, Nanoparticles as components of electrochemical sensing platforms for the detection of petroleum pollutants: a review, TrAC Trends in Analytical Chemistry, 118 (2019) 194-206.
[26] V. Apalangya, Y. D. Bensah, and E. Annan, Synthesis and characterization of zinc and copper oxide nanoparticles and their antibacterial activity, Results in Materials, 20 (2020) 30041-8.
[27] J. Oremusová and M. Vojteková, Density determination of liquids and solids, Manual for laboratory practice, UK , 121 (1999).
[28] A. A.  Abdul Hamead, Fabrication and AFM characterization of selenium recycled Nano particles by pulse laser evaporation and thermal evaporation, J. Mater. Res. Express, 6 (2020) 12.
[29] H. A.Sallal, A. A. Abdul Hamead, and F. M. Othman, Preparation of Al2O3/MgO Nano-composite particles for bio-applications, J. Engineering and Technology. 38 (2020) 586-583.
[30] H. Marco, B. Alfons, Differences in grain growth of calcite: a field-based modeling approach, J. Contrib Mineral Petrol, Springer-Verlag , 145 (2003) 600–611.
[31] R. Lamba, A. Umar, S. K. Mehta, S. K. Kansal, Sb2O3–ZnO Nano spindles: A potential material for photo catalytic and sensing applications, J. Ceram. Int., 41 (2015) 5429–5438.
[32] A. M. Abdul Majeed, I. F. Hussein, R. O.  Abd Al-Jalil, Fabrication of high responsively for MgO NPs/PSi heterojunction device by sol-gel technique, J. silicon-neth, 12 (2019) 1007–1010.
[33] G. S. Campos, D. C. German, J. A. G. Valenzuela, M. C. Leal, J. L. F. Rios, M. M. Gil, H. Hu, and  M. S. Lerma, Controlled synthesis of Mg(OH)2 thin films by chemical solution deposition and their thermal transformation to MgO thin films, J.CERAM INT, 45 (2019) 10356-10363.
[34] P. A.Tran, L.Sarin, R. H. Hurt, and T. J. Webster, Differential effects of Nano selenium doping on healthy and cancerous osteoblasts in couture on titanium, Int. J. Nano medicine , 5 (2010) 351–358.