1 Laser and Optoelectronics Engineering Dept, University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq

2 Laser and Optoelectronics Engineering Dept, University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

3 Physics Dept, Baghdad University-Iraq, Baghdad, Iraq


Graphene oxide synthesis by hummers method and reduction by the green chemical method using green tea. Preparation films with reduced graphene oxide (rGO) and Silver Nanoparticles (AgNPs) by a spin coating method. The preparation films and Nanomaterial characteristics with X-Ray diffraction (XRD) GO has a peak at (2θ = 11.22̊ ). While rGO has a wider peak at (2θ = 26.2̊ ). The (rGO +AgNPs) films have five obvious diffraction angles. In Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), flaky sheet (rGO), and spherical (AgNPs) with Nanosize about ~20 nm, the peaks of EDX indicated the presence of Carbon, silver, and oxygen. The energy gap was calculated from the absorbance spectrum and seemed to decrease with increasing AgNPs.

Graphical Abstract


  • The preparation films have good properties in electronic devices, with an energy gap decreasing from 3.4 to 3.1ev with the increase of AgNPs.
  • The extinction coefficient has the maximum value in the visible region.
  • The absorption coefficient shows the highest value at 300nm for rGO: AgNPs, and it
  • The increase of silver nanoparticle concentration increases the extinction coefficient values, similar to absorption coefficient behavior.


Main Subjects

[1] W. Lv et al., Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage, ACS Nano, 3 (2009) 3730–3736. Doi:10.1021/nn900933u
[2] Y. Hernandez et al., High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol., 3 (2008) 563–568. Doi:10.1038/nnano.2018.215
[3] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, Reduction of graphene oxide via l - ascorbic acid, Chem. Commun., 46 (2010) 1112–1114 .
[4] M. A., Faramarzi, A. Sadighi, Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv. Colloid Interfac, 20 (2013) 189−190.
[5] M. Shah,  D. Fawcett, S. Sharma, S. K. Tripathy, and G. E. J. Poinern,  Green synthesis of metallic nanoparticles via biological entities. Materials, 8 (2015) 7278–7308.  doi:10.3390/ma8115377
[6] Y. A. Chen, Y.J. Tai, and N.H. Fast Process to decorate silver nanoparticles on carbon nanomaterials for preparing high-performance flexible transparent conductive films. Langmuir.  2 (2013) 8433–8439.
[7] M. Ayán-Varela, M. J. Fernández-Merino, J. I.  Paredes, S.  Villar-Rodil, C.  Fernández-Sánchez, L. Guardia, A. Martínez-Alonso, and J. M. D. Tascón, Highly efficient silver-assisted reduction of graphene oxide dispersions at room temperature: Mechanism, and catalytic and electrochemical performance of the resulting hybrids. J. Mater. Chem.  2 (2014) 7295–7305.
[8] S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordin. Chem. Rev. 312 (2016) 99–148.
[9] J. Li, D. Kuang, Y. Feng, F. Zhang, Z. Xu, M. Liu, and D. Wang, Green synthesis of silver nanoparticles–graphene oxidenanocomposite and its application in electrochemical sensing of tryptophan. Biosens. Bioelectron. 42 (2013) 198–206.
[10] Hidayah N. M. S., et al. Comparison on graphite, graphene oxide, Reduce graphene oxide: synthesis and characterization, 150002, 2017.
[11] AuonkorM. T. H., Mahbubul I. M., Saidur R., and Metselaar H. S. C., The green reduction of graphene oxide, RSC Adv. 6 (2016) 27807–27828.
[12] S. Thakur and N. karak, Green reduction of graphene oxide by aqueous phytoextracts, Carbon N. Y., 50 (2012) 5331-5339.
[13] F. W. Low, C. W. Lai, and S. B. Abd hamid, Easy preparation of ultrathin reduce graphene oxide sheets at high stirring speed, Ceram , Int. , 41 (2015) 5798- 5806.
[14] Z. Zhang , F. G. Xu, W. S. Yang, M. Y. Guo, X. D. Wang, and B. L. Zhanga, et al. A facile one-pot method to high-quality Ag–graphene composite Nano sheets for efficient surface-enhanced Raman scattering. Chem Commu, 47 (2011) 6440–2.
[15] S. Gurunathan, J.W. Han, J.H. Park, E. Kim, Y.J. Choi, D.N. Kwon, J.H. Kim,Reduced graphene oxide-silver nanoparticle nanocomposite: A potential anticancer Nano therapy, Int. J. Nanomed. 10 (2015) 6257–6276. Doi:10.2147/IJN.S92449
[16] S.W. Chook, C.H. Chia, S. Zakaria, M.K. Ayob, K.L. Chee, N.M. Huang, H.M.Neoh, H.N. Lim, R. Jamal, and R.M.F.R.A. Rahman, Antibacterial performance of Ag nanoparticles and AgGO Nano composites prepared via rapid microwave assisted synthesis method, Nanoscale Res. Lett. 7 (2012) 1–7.
[17] D. Chen, L. Li, and L. Guo, An environment –friendly preparation of reduced graphene oxide sheets via amino acid , Nanotechnology,  22 (2011) 325601.
[18] N. Dies et al. Enhanced reduction of graphene oxide by high -pressure hydrothermal treatment, RSC Adv., 5 (2015) 81831- 81837.
[19] M. S. Ahmed, H. S. Han and S. Jeon, One- step chemical reduction of graphene oxide with oligothiophene for improved electrocatalyatic oxygen reduction reduction reaction , Carbon , 6 (2013) 164- 172.
[20] T. Kuila, S. Bose, P. khanara, and A. K. Mishra, Recent advanced in graphene – based biosensor, Biosens. Bio – electron. , 26 (2011) 4637 – 4648.
[21] M. Darroudi, M. B. Ahmad, R. Zamiri, A. K. Zak,A. H. Abdullah and N. A. Ibrahim, Time-dependent effect in green synthesis of silver nanoparticles Int. J. Nanomed., 6 (2011) 677–681. doi: 10.2147/IJN.S17669
[22] M.Abdullahab Farah T. Mohammedm NooribAmin H.Al-Khursana, Second-order nonlinear susceptibility in quantum dot structure under applied electric field, Superlattices and Microstructures , 82 (2015) 219-233 .
[23] S. Kumar, V. Singh, A. Tanwar, Structural, morphological, optical and photocatalytic properties of Ag-doped ZnO nanoparticles, J. Mater. Sci. Mater. Electron. 27 (2016) 2166–2173.
[24] T.M. Farah, I Noori, A. Kadhim2 and N. D. Hamza3, Optical and Structural Properties of ZnO:Au Nano composite Thin films, International Journal of Nano electronics and Materials 11 (2018 ) 347-356 .
[25] Y. Haldorai, B.K. Kim, Y.L. Jo and J.J. Shim, Ag@graphene oxide Nano composite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach, Mater. Chem. Phys. 143 ( 2014 ) 1452–1461