Document Type : Research Paper

Authors

1 Electrical Engineering, University of Technology, Baghdad, Iraq

2 Communication Engineering, University of Technology, Baghdad, Iraq

Abstract

A Compact high isolation Multi Input Multi Output Antenna system working on 3.5 GHz (3400 - 3600) MHz is presented for the 5G mobile terminals. Four-antenna elements are employed to construct the proposed MIMO antenna system. These antennas are located over two slim side-edges frame of a mobile device to meet the present trend requirements of slim and full-screen smartphone devices. A modified Hilbert fractal monopole antenna and an I-shaped feeding line construct the antenna element’s front part, while an L-shaped shorted to the system’s ground plane are used to the antenna element’s back part. The overall monopole antenna element’s size printed on the mobile frame’s side edge is (9.72 mm × 5.99 mm) so the desirable antenna miniaturization is achieved. Based on the spatial diversity and self-isolated techniques, high isolation (better than 16.3 dB) is attained by the proposed four-element MIMO antenna system. To assess the proposed antenna element’s performance, the scattering parameters, antenna gains, antenna efficiencies, and radiation pattern characteristics have been evaluated. Besides, the MEGs and ECCs are investigated to appreciate the proposed system’s MIMO performance. Desired antenna and MIMO performances are achieved by the proposed four-element MIMO antenna system so it can be a good candidate for the future 5G mobile handsets.

Graphical Abstract

Highlights

  • An effective design of a compact high isolation four elements antenna system operating on 3.5 GHz is presented for 5G MIMO mobile phone devices.
  • The self-isolated method is a very good technique for antenna array isolation enhancement.
  • Desirable antenna miniaturization and the simple structure of the proposed antenna element are achieved.
  • Good antenna and MIMO performances are attained from the proposed antenna system.

Keywords

Main Subjects

[1] C. Z. Han, L. Xiao, Z. Chen and T. Yuan, Co-Located Self-Neutralized Handset Antenna Pairs with Complementary Radiation Patterns for 5G MIMO Applications, IEEE Access, 8(2020) 73151–73163. doi:10.1109/ACCESS.2020.2988072.  
[2] A. Zhao and Z. Ren, Size Reduction of Self-Isolated MIMO Antenna System for 5G Mobile Phone Applications, IEEE Antennas and Wireless Propagation Letters, 18 (2019) 152–156. doi:10.1109/LAWP.2018.2883428.
[3] J. Sui and K. L. Wu, Self-Curing Decoupling Technique for Two Inverted-F Antennas with Capacitive Loads, IEEE Transactions on Antennas and Propagation, 66 (2018) 1093–1101. doi:10.1109/TAP.2018.2790041.
[4] Y. Wu, C. Xiao, Z. Ding, X. Gao and S. Jin, A Survey on MIMO Transmission with Finite Input Signals: Technical Challenges, Advances, and Future Trends, in: Proceedings of the IEEE, 106 (2018) 1779–1833.doi:10.1109/JPROC.2018.2848363.
[5] Y. Li, C. Sim, Y. Luo and G. Yang, High-Isolation 3.5 GHz Eight- Antenna MIMO Array Using Balanced Open-Slot Antenna Element for 5G Smartphones, IEEE Transactions on Antennas and Propagation, 67 (2019) 3820–3830. doi:10.1109/TAP.2019.2902751.
[6] C. Wu, C. Chiu and T. Ma, Very Compact Fully Lumped Decoupling Network for a Coupled Two-Element Array, IEEE Antennas and Wireless Propagation Letters, 15 (2015) 158–161. doi:10.1109/LAWP.2015.2435793.
[7] L. Zhao, L. K. Yeung, and K. Wu, A Coupled Resonator Decoupling Network for Two-Element Compact Antenna Arrays in Mobile Terminals,  IEEE Transactions on Antennas and Propagation, 62 (2014) 2767–2776. doi:10.1109/TAP.2014.2308547.
[8] L. Zhao and K. Wu, A Dual-Band Coupled Resonator Decoupling Network for Two Coupled Antennas, IEEE Transactions on Antennas and Propagation, 63 (2015) 2843–2850. doi:10.1109/TAP.2015.2421973.
[9] K. Qian, L. Zhao and K. Wu, An LTCC Coupled Resonator Decoupling Network for Two Antennas, IEEE Transactions on Microwave Theory and Techniques, 63 (2015) 3199–3207. doi:10.1109/TMTT.2015.2464816.
[10] C. Xue, X. Y. Zhang, Y. F. Cao, Z. Hou and C. F. Ding, MIMO Antenna Using Hybrid Electric and Magnetic Coupling for Isolation Enhancement,  IEEE Transactions on Antennas and Propagation, 65 (2017) 5162–5170. doi: 10.1109/TAP.2017.2738033.
[11] Z. Ren and A. Zhao, Dual-Band MIMO Antenna With Compact Self-Decoupled Antenna Pairs for 5G Mobile Applications,  IEEE Access, 7 (2019) 82288–82296. doi:10.1109/ACCESS.2019.2923666.
[12] A. J. Salim, R. S. Fyath and J. K. Ali, A New Miniaturized Folded Fractal Based PIFA Antenna Design for MIMO Wireless Applications, in: Proceedings of the International Conference on Information and Communication Technology, (2019) 36–40. doi:10.1145/3321289.3321298.
[13] M. Y. Li, Z. Q. Xu, Y. L. Ban, C. Y. D. Sim and Z. F. Yu, Eight-Port Orthogonally Dual-Polarised MIMO Antennas Using Loop Structures for 5G Smartphone, IET Microwaves, Antennas Propagation, 11 (2017) 1810–1816. doi:10.1049/iet-map.2017.0230
[14] W. Jiang, B. Liu, Y. Cui and W. Hu, High-Isolation Eight-Element MIMO Array for 5G Smartphone Applications, IEEE Access,  7 (2019)  34104–34112. doi:10.1109/ACCESS.2019.2904647.
[15] J. Guo, L. Cui, C. Li and B. Sun, Side-Edge Frame Printed Eight-Port Dual-Band Antenna Array for 5G Smartphone Applications, IEEE Transactions on Antennas and Propagation, 66 (2018) 7412–7417. doi:10.1109/TAP.2018.2872130.
[16] A. Zhao and Z. Ren, Multiple-Input and Multiple-Output Antenna System with Self-Isolated Antenna Element for Fifth-Generation Mobile Terminals, Microwave and Optical Technology Letters, 61(2019) 20–27. doi:10.1002/mop.31515
[17] M. Y. Muhsin, A. J. Salim and J. K. Ali, An Eight-Element MIMO Antenna system for 5G Mobile Handsets, in: 2021 International Symposium on Networks, Computers and Communications (ISNCC), (2021) 1–4. doi: 10.1109/ISNCC52172.2021.9615663.
[18] J. Li et al., Dual-Band Eight-Antenna Array Design for MIMO Applications in 5G Mobile Terminals, IEEE Access, 7 (2019) 71636–71644. doi:10.1109/ACCESS.2019.2908969.
[19] H. Zou et al., Dual-Functional MIMO Antenna Array With High Isolation for 5G/WLAN Applications in Smartphones,  IEEE Access, 7 (2019) 167470–167480.doi:10.1109/ACCESS.2019.2953311.
[20] Z. Qin, W. Geyi, M. Zhang and J. Wang, Printed Eight-Element MIMO System for Compact and Thin 5G Mobile Handest, Electronics Letters, 52 (2016) 416–418. doi:10.1049/el.2015.3960.
[21] K. L. Wong, C. Y. Tsai and J. Y. Lu, Two Asymmetrically Mirrored Gap-Coupled Loop Antennas as a Compact Building Block for Eight-Antenna MIMO Array in the Future Smartphone, IEEE Transactions on Antennas and Propagation, 65 (2017) 1765–1778. doi:10.1109/TAP.2017.2670534
[22] I. R. R. Barani, K. Wong, Y. Zhang and W. Li, Low-Profile Wideband Conjoined Open-Slot Antennas Fed by Grounded Coplanar Waveguides for  4 × 4 5G MIMO Operation, IEEE Transactions on Antennas and Propagation,  68 (2020) 2646–2657. doi:10.1109/TAP.2019.2957967.
[23] A. Zhao and Z. Ren, 5G MIMO Antenna System for Mobile Terminals, in: IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, (2019) 427–428.doi:10.1109/APUSNCURSINRSM.2019.8888835.