Document Type : Research Paper

Authors

1 Chemical Engineering Department, University of Technology, Baghdad, Iraq

2 University of Technology

3 Department of Chemical Engineering, Faculty of Engineering, University of Technology, Baghdad, Iraq

4 Chemical Engineering Department, Faculty of Engineering, University of Technology, Iraq

5 Chemical engineering department, University of technology-Iraq

6 Chemical engineering department, university of technology-Iraq

7 Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology (MS&T), Rolla, MO

Abstract

A fluidized bed reactor is commonly used for highly exothermic reactions for different chemical industrial processes. However, inefficient removal of the generated heat due to the exothermic reaction can seriously influence reactor performance. Hence, quantifying and understanding the heat transfer phenomena in this reactor is essential to enhance the performance of the reactor and consequently the chemical process. To achieve a better quantification and understanding of the heat transport in this reactor, an advanced heat transfer technique has been used in this study to quantify the impact of the presence of the cooling tubes on the local heat transfer coefficient under different operating conditions for this reactor. It has been found that the local heat transfer coefficient in the fluidized bed reactor equipped with a bundle of vertical tubes increases significantly as superficial gas velocity increases at the wall region, while different behavior was noticed at the center of the reactor. Moreover, the results show that the local heat transfer significantly decreases at the reactor's core region for all studied superficial gas velocities. Furthermore, the new tube arrangement offers a uniform local heat transfer profile for all studied operating conditions. The obtained new high-quality experimental data for the local heat transfer coefficient in a fluidized bed reactor equipped with a bundle of tubes can be used for validation CFD simulations or mathematical models, facilitating the design, scale up, and operation of this reactor.

Graphical Abstract

Highlights

  • An experimental investigation was carried out in mimicked Fischer-Tropsch fluidized bed reactor with vertical heat exchanging tubes.
  • An advanced heat transfer technique was used to quantify the heat transfer coefficient locally and instantaneously.
  • The impact of vertical heat exchanging tubes on the local heat transfer coefficient was investigated.
  • The findings of this study would further improve the knowledge of the impact of vertical heat exchanging tubes on heat transfer in gas-solid fluidized bed reactor.

Keywords

Main Subjects

[1] J. Karl and T. Pröll, Steam gasification of biomass in dual fluidized bed gasifiers: A review, Renew. Sustain. Energy Rev., 98 (2018) 64–78,  doi: 10.1016/j.rser.2018.09.010.
[2] M. Shahabuddin, M. T. Alam, B. B. Krishna, T. Bhaskar, and G. Perkins, A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes, Bioresour. Technol.,  312 (2020) 123596, doi: 10.1016/j.biortech.2020.123596.
[3] G. Zang, P. Sun, A. A. Elgowainy, A. Bafana, and M. Wang, Performance and cost analysis of liquid fuel production from H2and CO2based on the Fischer-Tropsch process, J. CO2 Util., 46 (2021) 101459,  doi: 10.1016/j.jcou.2021.101459.
[4] I. Hannula, N. Kaisalo, and P. Simell, Preparation of Synthesis Gas from CO2 for Fischer–Tropsch Synthesis—Comparison of Alternative Process Configurations,C—Journal Carbon Res., 6 (2020) 55 doi: 10.3390/c6030055.
[5] R. G. dos Santos and A. C. Alencar, Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review, Int. J. Hydrogen Energy,  45 (2020) 18114–18132. doi: 10.1016/j.ijhydene.2019.07.133.
[6] M. Kagumba, H. Al-Naseri, and M. H. Al-Dahhan, A new contact time model for the mechanistic assessment of local heat transfer coefficients in bubble column using both the four-optical fiber probe and the fast heat transfer probe-simultaneously,Chem. Eng. J.,  361 (2018) 67–79, 2019. doi: 10.1016/j.cej.2018.12.046.
[7] M. Pasha, G. Li, M. Shang, S. Liu, and Y. Su, Mass transfer and kinetic characteristics for CO2 absorption in microstructured reactors using an aqueous mixed amine, Sep. Purif. Technol.,  274 (2021) 118987, 2021. doi: 10.1016/j.seppur.2021.118987.
[8] S. I. Ngo, Y. Il Lim, D. Lee, and M. W. Seo, Flow behavior and heat transfer in bubbling fluidized-bed with immersed heat exchange tubes for CO2 methanation, Powder Technol., 380 (2021) 462–474, 2021, doi: 10.1016/j.powtec.2020.11.027.
[9] X. Guan, Q. Xu, N. Yang, and K. D. P. Nigam, Hydrodynamics in Bubble Columns with Helically-Finned Tube Internals: Experiments and CFD-PBM Simulation, Chem. Eng. Sci., (2021) 116674, doi: 10.1016/j.ces.2021.116674.
[10] Y. Cochet, C. Briens, F. Berruti, J. McMillan, and F. J. Sanchez Careaga, Impact of column geometry and internals on gas and particle flows in a fluidized bed with downward solids circulation: Effect of lateral injection profile and baffles, Powder Technol., 372 (2021) 275–289, 2020, doi: 10.1016/j.powtec.2020.05.071.
[11] W. J. Huang, C. T. Yu, W. J. Sheu, and Y. C. Chen, The effect of non-uniform temperature on the sorption-enhanced steam methane reforming in a tubular fixed-bed reactor,Int. J. Hydrogen Energy, 46 (2021) 16522–16533, 2021, doi: 10.1016/j.ijhydene.2020.07.182.
[12] A. A. Jasim, A. J. Sultan, and M. H. Al-Dahhan, Influence of heat-exchanging tubes diameter on the gas holdup and bubble dynamics in a bubble column, Fuel,  236 (2019) 63–82,2019, doi: 10.1016/j.ijmultiphaseflow.2018.11.008.
[13] V. Verma, T. Li, J. Dietiker, and W. A. Rogers, Sub-grid drag model for immersed vertical cylinders in fl uidized beds, Powder Technol., 2017, doi: 10.1016/j.powtec.2016.12.044.
[14] X. Zhang, W. Qian, H. Zhang, Q. Sun, and W. Ying, Effect of the operation parameters on the Fischer–Tropsch synthesis in fluidized bed reactors, Chinese J. Chem. Eng., 26 (2018) 245–251, 2018, doi: 10.1016/j.cjche.2017.05.012.
[15] H. Taofeeq and M. Al-Dahhan, The impact of vertical internals array on the key hydrodynamic parameters in a gas-solid fluidized bed using an advance optical fiber probe, Adv. Powder Technol.,  29 (2018) 2548–2567. doi: 10.1016/j.apt.2018.07.008.
[16] B. Lv, X. Deng, Z. Luo, Y. Fu, C. Chen, and X. Xu, Impact of vertical internals on the hydrodynamics and separation performance of a gas–solid separation fluidized bed, Powder Technol., 360 (2020) 577–587. doi: 10.1016/j.powtec.2019.10.071.
[17] N. Nemati, P. Andersson, V. Stenberg, and M. Rydén, Experimental Investigation of the Effect of Random Packings on Heat Transfer and Particle Segregation in Packed-Fluidized Bed, Ind. Eng. Chem. Res.,  60 (2021) 10365–10375. doi: 10.1021/acs.iecr.1c01221.
[18] L. von Berg, A. Soria-Verdugo, C. Hochenauer, R. Scharler, and A. Anca-Couce, Evaluation of heat transfer models at various fluidization velocities for biomass pyrolysis conducted in a bubbling fluidized bed, Int. J. Heat Mass Transf.,  160, (2020) 120175, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120175.
[19] A. J. Sultan, L. S. Sabri, and M. H. Al-Dahhan, Impact of heat-exchanging tube configurations on the gas holdup distribution in bubble columns using gamma-ray computed tomography, Int. J. Multiph. Flow,  106 (2018) 202–219, doi: 10.1016/j.ijmultiphaseflow.2018.05.006.
[20] A. J. Sultan, L. S. Sabri, and M. H. Al-Dahhan, Investigating the influence of the configuration of the bundle of heat exchanging tubes and column size on the gas holdup distributions in bubble columns via gamma-ray computed tomography, Exp. Therm. Fluid Sci., 2018, doi: 10.1016/j.expthermflusci.2018.05.005.
[21] F. Schillinger, S. Maurer, E. C. Wagner, J. R. Van Ommen, R. F. Mudde, and T. J. Schildhauer, PT US CR, Int. J. Multiph. Flow, 2017, doi: 10.1016/j.ijmultiphaseflow.2017.07.013.
[22] C. Vargas‐salgado, E. Hurtado‐pérez, D. Alfonso‐solar, and A. Malmquist, Empirical design, construction, and experimental test of a small‐scale bubbling fluidized bed reactor, Sustain., 13(2021) 1–23, 2021. doi: 10.3390/su13031061.
[23] J. Chladek, C. K. Jayarathna, B. M. E. Moldestad, and L. A. Tokheim, Fluidized bed classification of particles of different size and density, Chem. Eng. Sci., 177 (2018) 151–162.  doi: 10.1016/j.ces.2017.11.042.
[24] J. M. Ali, A. J. Sultan, and B. J. Kadhim, Experimental investigation and COMSOL modeling for different geometrical configurations of extended surfaces, Heat Transf.,  50 (2021) 1612–1630, doi: 10.1002/htj.21944.
[25] M. Hamzehei, Study of Heat Transfer and Hydrodynamics in the Fluidized Bed Reactors, Heat Transf. - Math. Model. Numer. Methods Inf. Technol., 2011, doi: 10.5772/14565.
[26] A. Stefanova, H. T. Bi, J. C. Lim, and J. R. Grace, Local hydrodynamics and heat transfer in fluidized beds of different diameter, Powder Technol.,  212 (2011) 57–63, 2011, doi: 10.1016/j.powtec.2011.04.026.
[27] M. A. Shrshab and Y. I. Abdulaziz, Determination of Heat Transfer Coefficients in Air-Solid Fluidized Bed, IOP Conf. Ser. Mater. Sci. Eng.,  928, (2020), doi: 10.1088/1757-899X/928/2/022067.
[28] V. Stenberg, V. Sköldberg, L. Öhrby, and M. Rydén, Evaluation of bed-to-tube surface heat transfer coefficient for a horizontal tube in bubbling fluidized bed at high temperature, Powder Technol.,352 (2019) 488–500, doi: 10.1016/j.powtec.2019.04.073.
[29] N. Masoumifard, N. Mostoufi, and R. Sotudeh-Gharebagh, Prediction of the maximum heat transfer coefficient between a horizontal tube and gas-solid fluidized beds, Heat Transf. Eng., 31 (2010) 870–879, doi: 10.1080/01457630903550275.
[30] N. S. Grewal and S. C. Saxena, Heat transfer between a horizontal tube and a gas-solid fluidized bed, Int. J. Heat Mass Transf.,  23 (1980) 1505–1519, 1980, doi: 10.1016/0017-9310(80)90154-4.
[31] X. Wu, Y. Li, X. Zhu, L. Huang, and X. Zhu, Experimental study on fluidization behaviors of walnut shell in a fluidized bed assisted by sand particles, RSC Adv., 8 (2018) 40279–40287,  doi: 10.1039/C8RA07959E.
[32] M. A. Izquierdo-Barrientos, M. Fernández-Torrijos, J. A. Almendros-Ibáñez, and C. Sobrino, Experimental study of fixed and fluidized beds of PCM with an internal heat exchanger, Appl. Therm. Eng.,  106 (2016) 1042–1051. doi: 10.1016/j.applthermaleng.2016.06.049.
[33] A. A. Jasim, A. J. Sultan, and M. H. Al-Dahhan, Impact of heat exchanging internals configurations on the gas holdup and bubble properties in a bubble column, Int. J. Multiph. Flow, 112 (2019) 63–82. doi: 10.1016/j.ijmultiphaseflow.2018.11.008.
[34] A. A. Youssef and M. H. Al-Dahhan, Impact of internals on the gas holdup and bubble properties of a bubble column, Ind. Eng. Chem. Res.,  48 (2009) 8007–8013. doi: 10.1021/ie900266q.
[35] U. Kumar and V. K. Agarwal, Biomass gasification in a fluidized bed reactor: Hydrodynamics and heat transfer studies, Numer. Heat Transf. Part A Appl., 70 (2016) 513–531. doi: 10.1080/10407782.2016.1177340.
[36] P. Li, R. Hou, C. Zhang, and T. Wang, Hydrodynamic behaviors of a spouted fluidized bed with a conical distributor and auxiliary inlets for the production of polysilicon with wide-size-distribution particles,Chem. Eng. Sci., 247 (2022) 117069.  doi: 10.1016/j.ces.2021.117069.
[37] A. Efhaima and M. H. Al- Dahhan, Validation of the new mechanistic scale-up of gas-solid fluidized beds using advanced non-invasive measurement techniques, Can. J. Chem. Eng.,  2021, 2020. doi: 10.1002/cjce.23938.
[38] H. J. Das, P. Mahanta, and R. Saikia, Characterization of sand particles in a bubbling fluidized bed with diverging riser, Int. Commun. Heat Mass Transf., 119 ( 2021)  104953.  doi: 10.1016/j.icheatmasstransfer.2020.104953.
[39] S. Ge et al., Electrostatic effects on hydrodynamics in the riser of the circulating fluidized bed for polypropylene, AIChE J., 66 (2020) 1–13, 2020, doi: 10.1002/aic.16916.
[40] R. S. Abdulmohsin, B. A. Abid, and M. H. Al-dahhan, Chemical Engineering Research and Design Heat transfer study in a pilot-plant scale bubble column,Chem. Eng. Res. Des., 89 (2021) 78–84, doi: 10.1016/j.cherd.2010.04.019.
[41] A. K. Jhawar and A. Prakash, Influence of bubble column diameter on local heat transfer and related hydrodynamics, Chem. Eng. Res. Des., 89 (2011) 1996–2002. doi: 10.1016/j.cherd.2010.11.019.
[42] A. Yadav and S. Roy, Void fraction distribution for convective boiling flows in single and multiple heater rods assembly, Chem. Eng. Sci., 247 (2022) 117063. doi: 10.1016/j.ces.2021.117063.
[43] X. Guan and N. Yang, Characterizing regime transitions in a bubble column with internals, AIChE J.,  67 (2021)1–15.  doi: 10.1002/aic.17167.
[44] A. A. Youssef, M. E. Hamed, J. T. Grimes, M. H. Al-Dahhan, and M. P. Duduković, Hydrodynamics of pilot-scale bubble columns: Effect of internals, Ind. Eng. Chem. Res., 2013, doi: 10.1021/ie300465t.
[45] P. C. Bisognin, J. M. Fusco, and C. Soares, Heat transfer in fluidized beds with immersed surface: Effect of geometric parameters of surface, Powder Technol., 297  (2016) 401–408, doi: 10.1016/j.powtec.2016.04.028.
[46] C. G. Philippsen, A. C. F. Vilela, and L. D. Zen, Fluidized bed modeling applied to the analysis of processes: Review and state of the art, J. Mater. Res. Technol.,  4 (2015) 208–216, doi: 10.1016/j.jmrt.2014.10.018.
[47] L. Wang et al., Experimental and numerical investigation of particle flow and mixing characteristics in an internally circulating fluidized bed, J. Chem. Eng. Japan,  52 (2019) 89–98, doi: 10.1252/jcej.18we014.
[48] H. Taofeeq and M. Al-Dahhan, Heat transfer and hydrodynamics in a gas-solid fluidized bed with vertical immersed internals, Int. J. Heat Mass Transf.,  122 (2018) 229–251, doi: 10.1016/j.ijheatmasstransfer.2018.01.093.