Document Type : Review Paper

Authors

1 Chemical engineering department. University of technology

2 Chemical Engineering Department, Faculty of Engineering, University of Technology, Iraq

3 Chemical Engineering Dept., University of Technology-Iraq, Alsina’a street,10066 Baghdad, Iraq.

Abstract

This study reviews recent research on the synthesis and application of titanium dioxide (TiO2)-based photocatalysts for environmental applications. The principles of non-homogenous photo-catalysis include utilizing a solid semiconductor, such as titanium dioxide Nano or macro, to form a stable suspension (heterogeneous phase) at the impact of irradiation to elevate a reaction at the surface interface of the different phases in the system. Recently, titanium dioxide has been considered the better semiconductor in non-homogenous photoinduced treatment. TiO2-based photocatalysts have broad applications for industrial processes because of their exceptional physicochemical properties. Nevertheless, having a narrow band near the ultraviolet region limits its applications within visible radiation. As a result of this, there have been considerable research efforts to improve the visible light tendency of TiO2 through modifications of its optical and electronic properties. Several strategies, such as coupling TiO2 tightly and incorporating other metallic components during synthesis, have increased the bandgap of TiO2 for visible light applications. Moreover, an overview of nanotechnology that could enhance the properties of TiO2-based catalysts in an environmentally friendly way to decompose pollutants is also presented. The various TiO2-based photocatalysts have wide applications in degrading recalcitrant pollutants in the air, water, and wastewater treatment under visible light.

Graphical Abstract

Highlights

  • The advantages of TiO2 -based as a photocatalyst are reviewed in this study.
  • The development of the group gap in photocatalyst (TiO2) by different doping was investigated.
  • Modification in the structure across the photocatalytic activity of TiO2 is reviewed.
  • Different preparation methods and applications of the Methodology of photocatalysts were also reviewed

Keywords

Main Subjects

[1] O. G. Fawole, X.-M. Cai, and A. R. MacKenzie, Gas flaring and resultant air pollution: A review focusing on black carbon. Environ. Pollut. , 216 (2016) 182–197. doi.org/10.1016/j.envpol.2016.05.075
[2] A. R. Ridzuan, The impact of energy consumption based on fossil fuel and hydroelectricity generation towards pollution in Malaysia, Indonesia and Thailand. Int. J. Energy Econ. Policy, 10 (2020) 215–227. doi.org/10.32479/ijeep.8140.
[3] W. M. Sweileh, S. W. Al-Jabi, S. H. Zyoud, and A. F. Sawalha, Outdoor air pollution and respiratory health: A bibliometric analysis of publications in peer-reviewed journals (1900 - 2017). Multidisciplinary Respiratory Medicine, 13 (2018) 1–12. doi.org/10.1186/s40248-018-0128-5.
[4] S. Jiménez, M. M. Micó, M. Arnaldos, F. Medina, and S. Contreras, State of the art of produced water treatment. Chemosphere., 192 (2018) 186–208. doi.org/https://doi.org/10.1016/j.chemosphere.2017.10.139
[5] S. Varjani, R. Joshi, V. K. Srivastava, H. H. Ngo, and W. Guo, Treatment of wastewater from petroleum industry: current practices and perspectives. Environmental Science and Pollution Research., 27 (020) 27172–27180. doi.org/10.1007/s11356-019-04725-x.
[6] T. Y. Wu, A. W. Mohammad, J. M. Jahim, and N. Anuar, Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. J. Environ. Manage, 91 (2020) 1467–1490. doi.org/10.1016/j.jenvman.2010.02.008
[7] Y. Wang, X. Luo, W. Chen, M. Zhao, and B. Wang, Exploring the spatial effect of urbanization on multi-sectoral CO2 emissions in China. Atmospheric Pollution Research, 10 (2019) 1610–1620. doi.org/10.1016/j.apr.2019.06.001
[8] R. J. Tayade, and D. L. Key, Synthesis and Characterization of Titanium Dioxide Nanotubes for Photocatalytic Degradation of Aqueous Nitrobenzene in the Presence of Sunlight. Materials Science Forum, 657 (2010) 62–74. https://doi.org/10.4028/www.scientific.net/MSF.657.62
[9] P. Amoatey, H. Omidvarborna, M. S. Baawain, and A. Al-Mamun, Emissions and exposure assessments of SOX, NOX, PM10/2.5 and trace metals from oil industries: A review study (2000–2018). Process Safety and Environmental Protection, 123 (2019) 215–228. doi.org/10.1016/j.psep.2019.01.014.
[10] M. Salman, X. Long, L. Dauda, C. N. Mensah, and S. Muhammad, Different impacts of export and import on carbon emissions across 7 ASEAN countries: A panel quantile regression approach. Science of the Total Environment, 686 (2019) 1019–1029. doi.org/10.1016/j.scitotenv.2019.06.019
[11] M. F. Abid, E. M. Mohammed, O. N. Abdullah, Designing and operating a pilot plant for purification of industrial wastewater from toxic organic compounds by utilizing solar energy. Korean J. Chem. Eng., 31(2014) 1194-1203. DOI: 10.1007/s11814-014-0052-0.
[12] A. Sobczyński, L. Duczmal, and W. Zmudziński, Phenol destruction by photocatalysis on TiO2: An attempt to solve the reaction mechanism. J. Mol. Catal. A Chem., 213 (2004) 225–230. doi.org/10.1016/j.molcata.2003.12.006
[13] V. Kumaravel, S. Mathew, J. Bartlett, and S. C. Pillai,   Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Applied Catalysis B: Environmental, 244 (2018), 1021–1064. doi.org/10.1016/j.apcatb.2018.11.080.
[14] Alasady, A. M. Abdullah, Solar energy the suitable energy alternative for Iraq beyond oil. 2011 International Conference on Petroleum and Sustainable Development, 26, 2011, 11–15.
[15] J. Qian, Z. Chen, C. Liu, X. Lu, F. Wang, and M. Wang,  Improved visible-light-driven photocatalytic activity of CeO2 microspheres obtained by using lotus flower pollen as biotemplate. Materials Science in Semiconductor Processing, 25(2014) 27–33. doi.org/10.1016/j.mssp.2013.09.020.
[16] G. Li, J. Guo, Y. Hu, Y. Wang, J. Wang, S. Zhang, and Q. Zhong, Facile synthesis of the Z-scheme graphite-like carbon nitride/silver/silver phosphate nanocomposite for photocatalytic oxidative removal of nitric oxides under visible light. Journal of Colloid and Interface Science, 588 (2021)110–121. doi.org/10.1016/j.jcis.2020.12.063.
[17]  D. Praveen Kumar, N. Lakshmana Reddy, B. Srinivas, V. Durgakumari, V. Roddatis, O. Bondarchuk, M. Karthik, Y. Ikuma, and M. V. Shankar,  Stable and active CuxO/TiO2 nanostructured catalyst for proficient hydrogen production under solar light irradiation. Sol. Energy Mater. Sol. Cells., 146 (2016) 63–71. doi.org/10.1016/j.solmat.2015.11.030.
[18] M.F. Abid, S.T. Hamiedi, S.I. Ibrahim, S.K. Al-Nasri,  Removal of toxic organic compounds from synthetic wastewater by a solar photocatalysis system.  Desalination and Water Treatment., 105 (2018) 119–125.  doi: 10.5004/dwt.2018.22017.
[19] C. A. Martı, and S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment : direct and indirect processes. Chemical Society Reviews, 35 (2006) 1324–1340. doi.org/10.1039/b517632h.
[20] M. Ge, J. Cai, J. Iocozzia, C. Cao, J. Huang, X. Zhang, J. Shen, S. Wang, S. Zhang, K. Q. Zhang, Y. Lai, and Z. Lin,  A review of TiO2 nanostructured catalysts for sustainable H2 generation. International Journal of Hydrogen Energy, 42 (2017) 8418–8449. doi.org/10.1016/j.ijhydene.2016.12.052
[21] S. B. Patil, P. S. Basavarajappa, N. Ganganagappa, M. S. Jyothi, A. V Raghu, and K. R. Reddy, Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int. J. Hydrogen Energy, 44 (2019) 13022–13039. doi.org/10.1016/j.ijhydene.2019.03.164.
[22] The Essential Chemical Industry)
[23] K. P. Jyothi, S. Yesodharan, and E. P. Yesodharan,   Ultrasound (US), Ultraviolet light (UV) and combination (US+UV) assisted semiconductor catalysed degradation of organic pollutants in water: Oscillation in the concentration of hydrogen peroxide ford in situ. Ultrasonics Sonochemistry, 21(2014)1787–1796. doi.org/10.1016/j.ultsonch.2014.03.019
[24] D. Chen, K. Wang, D. Xiang, R. Zong, W. Yao, and Y. Zhu, Significantly enhancement of photocatalytic performances via core–shell structure of ZnO@ mpg-C3N4. Applied Catalysis B: Environmental, 147(2014) 554-561.‏
[25] A. Fujishimma, and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode.Nature, 238 (1972) 37–38. doi.org/10.1038/238037a0.
[26] A. Fujishima, K. Kohayakawa, and K. Honda, Hydrogen Production under Sunlight with an Electrochemical Photocell. Journal of The Electrochemical Society, 122 (1975) 1487–1489. doi.org/10.1149/1.2134048.
[27] T. Inoue, T. Watanabe, A. Fujishima, and K. Honda, Competitive photosensitized oxidation at tio2 photoanode. Chemistry Letters, 6 (1977) 1073–1076.
[28] M. P. Languer, F. R. Scheffer, A. F. Feil, D. L. Baptista, P. Migowski, G. J. Machado, D. P. de Moraes, J. Dupont, S. R. Teixeira, and D. E. Weibel, Photo-induced reforming of alcohols with improved hydrogen apparent quantum yield on TiO2 nanotubes loaded with ultra-small Pt nanoparticles. International Journal of Hydrogen Energy, 38 (2013)14440–14450. doi.org/10.1016/j.ijhydene.2013.09.018
[29] S. K. Parayil, H. S. Kibombo, C.-M. Wu, R. Peng, T. Kindle, S. Mishra, S. P. Ahrenkiel, J. Baltrusaitis, N. M. Dimitrijevic, T. Rajh, and R. T. Koodali,  Synthesis-Dependent Oxidation State of Platinum on TiO2 and Their Influences on the Solar Simulated Photocatalytic Hydrogen Production from Water. The Journal of Physical Chemistry C, 117(2013) 16850–16862. doi.org/10.1021/jp405727k.
[30] G. Hüsken, M. Hunger, and H. J. H. Brouwers, Experimental study of photocatalytic concrete products for air purification. Building and Environment, 44 (2009) 2463–2474. doi.org/10.1016/j.buildenv.2009.04.010
[31] C.-C. Lo, C.-W. Huang, C.-H. Liao, and J. C. S. Wu, Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting. International Journal of Hydrogen Energy, 35 (2010) 1523–1529. doi.org/10.1016/j.ijhydene.2009.12.032.
[32] A. H. Mamaghani, F. Haghighat, and C.-S. Lee, Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Applied Catalysis B: Environmental, 203 (2017) 247–269. doi.org/10.1016/j.apcatb.2016.10.037.
[33] F. Mushtaq, A. Asani, M. Hoop, X.Z. Chen, D. Ahmed, B. J. Nelson, and S. Pané,  Highly Efficient Coaxial TiO2-PtPd Tubular Nanomachines for Photocatalytic Water Purification with Multiple Locomotion Strategies. Advanced Functional Materials, 26 (2016) 6995–7002. doi.org/10.1002/adfm.201602315
[34] N. Negishi, Y. Miyazaki, S. Kato, and Y. Yang, Effect of HCO3− concentration in groundwater on TiO2 photocatalytic water purification. Applied Catalysis B: Environmental, 242 (2019) 449–459. doi.org/10.1016/j.apcatb.2018.10.022.
[35] H. Ren, P. Koshy, W.F. Chen, S. Qi, and C. C. Sorrell, Photocatalytic materials and technologies for air purification. Journal of Hazardous Materials, 325 (2017) 340–366. doi.org/10.1016/j.jhazmat.2016.08.072
[36] K. Yamaguti, and S. Sato, Photolysis of water over metallized powdered titanium dioxide. J. Chem. Soc.{,} Faraday Trans. 1, 81 (1985) 1237–1246. doi.org/10.1039/F19858101237
[37] A. N. Banerjee, The design, fabrication, and photocatalytic utility of nanostructured semiconductors: Focus on TiO2-based nanostructures. Nanotechnology, Science and Applications, 4 (2011) 35–65. doi.org/10.2147/NSA.S9040.
[38] C. Nie, L. Liu, and R. He, Pt/TiO2-ZnO in a circuit Photo-electro-catalytically removed HCHO for outstanding indoor air purification. Separation and Purification Technology, 206 (2018) 316–323.doi.org/10.1016/j.seppur.2018.06.024
[39] I. B. Topçu, E. Akkan, T. Uygunoğlu, and K. Çalişkan, Self-Cleaning Concretes: An Overview. J. Cem. Based Compos, 2 (2020) 6-12.‏
[40] K. Nakata, and A. Fujishima, TiO2 photocatalysis: Design and applications. Journal of photochemistry and photobiology C: Photochemistry Reviews, 13 (2012) 169-189.‏ doi.org/10.1016/j.jphotochemrev.2012.06.001
[41] W.C. Hung, S.H. Fu, J.J. Tseng, H. Chu, and T.H. Ko, Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol–gel method. Chemosphere, 66 (2007) 2142–2151. doi.org/10.1016/j.chemosphere.2006.09.037
[42] K. H. Chan, and W. Chu, Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process. Water Research, 43 (2009) 2513-2521.
[43] M. Hassan, L. N. Mohammad, S. Asadi, H. Dylla, and S. Cooper, Sustainable photocatalytic asphalt pavements for mitigation of nitrogen oxide and sulfur dioxide vehicle emissions. Journal of Materials in Civil Engineering, 25 (2013) 365-371.‏
[44] A. Mittal, B. Mari, S. Sharma, V. Kumari, S. Maken, K. Kumari, and N. Kumar, Non-metal modified TiO2: a step towards visible light photocatalysis. Journal of Materials Science: Materials in Electronics, 30 (2019) 3186-3207.‏
[45] G. Crini, Non-conventional low-cost adsorbents for dye removal: a review. Bioresource technology, 97(2006) 1061-1085.
[46] M. T. Yagub, T. K. Sen, S. Afroze, and H. M. Ang, Dye and its removal from aqueous solution by adsorption: a review. Advances in colloid and interface science, 209 (2014) 172-184.
[47] A. Y. Zhang, W. K. Wang, D. N. Pei, and H. Q. Yu,  Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst. Water research, 92 (2016) 78-86.‏
[48] I. Rocha Segundo, E. Freitas, S. Landi, M. F. Costa, and J. O. Carneiro, Smart, photocatalytic and self-cleaning asphalt mixtures: a literature review. Coatings, 9 (2019) 696.‏
[49] H. Chen, Y. Liu, C. Xie, J. Wu, D. Zeng, and Y. Liao,   A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature. Ceramics International, 38 (2012) 503-509.‏
[50] C. L. Bianchi, C. Pirola, M. Stucchi, B. Sacchi, G. Cerrato, S. Morandi, ... and V. A, Capucci,  new frontier of photocatalysis employing micro-sized TiO2: Air/water pollution abatement and self-cleaning/antibacterial applications 635-666, 2016. INTECH OPEN.‏
[51] F. Sandrolini, E. Franzoni, and M. Biolcati Rinaldi, Proposte per una metodologia di valutazione dell’ecosostenibilità dei materiali e componenti edilizi in sede progettuale. INARCOS, 634, 637-640, 2002.‏
[52] J. Zhang, Y. Wu, M. Xing, S. A. K. Leghari, and S. Sajjad, Development of modified N doped TiO 2 photocatalyst with metals, nonmetals and metal oxides. Energy & Environmental Science, 3 (2010) 715-726. doi.org/10.1039/B927575D.
[53] X. Jiang, M. Manawan, T. Feng, R. Qian, T. Zhao, G. Zhou, ... and J. H. Pan,  Anatase and rutile in evonik aeroxide P25: heterojunctioned or individual nanoparticles?. Catalysis Today, 300 (2018) 12-17.‏ doi.org/10.1016/j.cattod.2017.06.010
[54] A. O. Ibhadon, and P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications. Catalysts, 3 (2013) 189-218.‏ doi.org/10.3390/catal3010189.
[55] M. Sayed, A. Arooj, N. S. Shah, J. A. Khan, L. A. Shah, F. Rehman, ... and A. R. Khan,  Narrowing the band gap of TiO2 by co-doping with Mn2 + and Co2 + for efficient photocatalytic degradation of enoxacin and its additional peroxidase like activity: a mechanistic approach. Journal of Molecular Liquids, 272 (2018) 403-412.‏
[56] A. A. Septevani, Y. A. Devy, D. S. Khaerudini, M. Septiyanti, and Y. Sampora,  (2021, August). Facile and low-cost production of TiO2 nanoparticles using high-energy milling for dye degradation." AIP Conference Proceedings. Vol. 2382. No. 1. AIP Publishing LLC, 2021.‏
[57] M. Hassan and A. M. Okeil, Field and laboratory investigation of photocatalytic pavements (No. GCCETR 11-10) 2011. Gulf Coast Research Center for Evacuation and Transportation Resiliency.
[58] G. Oksdath-Mansilla, A. B. Peñéñory, I. Barnes, P. Wiesen, and M. A. Teruel,  Photodegradation of (CH3CH2) 2S and CH3CH2SCH3 initiated by OH radicals at atmospheric pressure. Product yields and mechanism in NOx free air. Atmospheric Environment, 55 (2012) 263-270.‏ doi.org/10.1016/j.atmosenv.2012.02.086.
[59] L. Venturini, and M. Bacchi, Research, Design, and Development of a Photocatalytic Asphalt Pavement. Proceedings of 2nd International Conference on Environmentally Friendly Roads: ENVIROAD 2009, Warsaw, Poland, 2009.
[60] J. M. Cordero, R. Hingorani, E. Jiménez-Relinque, M. Grande, R. Borge, A. Narros, and M. Castellote, NOx removal efficiency of urban photocatalytic pavements at pilot scale. Science of The Total Environment, 719 (2020) 137459.‏
[61] M. Bocci, G. Cerni, and S. Colagrande, Experimental investigation of the dynamic behaviour of asphalt concrete treated with photocatalytic mortars. In Proceedings of the 3rd International Conference on Tranportation Infrastructure 95-102 , 2014.‏
[62] T. Feng, G. S. Feng, L. Yan, and J. H. Pan, One-dimensional nanostructured TiO2 for photocatalytic degradation of organic pollutants in wastewater. International Journal of Photoenergy, 2014.
[63] K. Hashimoto, H. Irie, and A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Japanese journal of applied physics, 44 (2005) 8269.‏
[64] J. Chen, and C. S. Poon, Photocatalytic construction and building materials: from fundamentals to applications. Building and environment, 44 (2009) 1899-1906.‏
[65] M. Shokri, A. Jodat, N. Modirshahla, and M. A. Behnajady, Photocatalytic degradation of chloramphenicol in an aqueous suspension of silver-doped TiO2 nanoparticles. Environmental technology, 34 (2013) 1161-1166.‏
[66] A. M. Sheikh Asadi, M. Malakootian, E. Kowsari, and H. Alidadi, Ionic liquid-assisted sol-gel synthesis of Fe2O3-TiO2 for enhanced photocatalytic degradation of bisphenol a under UV illumination: Modeling and optimization using response surface methodology. Optik, 204 (2020) 164229. doi.org/10.1016/j.ijleo.2020.164229.
[67] R. Mohammadi, B. Massoumi, and M. Rabani, Photocatalytic Decomposition of Amoxicillin Trihydrate Antibiotic in Aqueous Solutions under UV Irradiation Using Sn/TiO2 Nanoparticles. International Journal of Photoenergy, (2012) 514856. doi.org/10.1155/2012/514856.
[68] Y. Li, W. Gao, L. Ci, C. Wang, and P. M. Ajayan, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon, 48 (2010) 1124–1130. doi.org/10.1016/j.carbon.2009.11.034
[69] M. Hinojosa – Reyes, R. Camposeco – Solis, F. Ruiz, V. Rodríguez – González, and E. Moctezuma, Promotional effect of metal doping on nanostructured TiO2 during the photocatalytic degradation of 4-chlorophenol and naproxen sodium as pollutants. Materials Science in Semiconductor Processing, 100 (2019) 130–139. doi.org/10.1016/j.mssp.2019.04.050.
[70] Z.Y. Shanian, M.F. Abid, K.A. Sukkar, Photodegradation of mefenamic acid from wastewater in a continuous flow solar falling film reactor. Desalination and Water Treatment, 210 (2021) 22–30. doi: 10.5004/dwt.2021.26581.
[71] A. N. Kadam, R. S. Dhabbe, M. R. Kokate, Y. B. Gaikwad, and K. M. Garadkar, Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133 (2014) 669-676.
[72] S. Sood, A. Umar, S. K. Mehta, and S. K. Kansal, Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. Journal of colloid and interface science, 450 (2015) 213-223.‏
[73] S. S. Boxi, K. Mukherjee, and S. Paria, Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology, 27 (2016) 085103.‏
[74] K. H.Leong, B. L. Gan, S. Ibrahim, and P. Saravanan, Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds. Applied Surface Science, 319 (2014) 128-135.  
[75] S. Mahdavi, and S. R. Allahkaram, Composition, characteristics and tribological behavior of Cr, Co–Cr and Co–Cr/TiO2 nano-composite coatings electrodeposited from trivalent chromium based baths. Journal of Alloys and Compounds, 635 (2015) 150–157. doi.org/10.1016/j.jallcom.2015.02.119
[76] M. P. Blanco-Vega, J. L. Guzmán-Mar, M. Villanueva-Rodríguez, L. Maya-Treviño, L. L. Garza-Tovar, A. Hernández-Ramírez, and L. Hinojosa-Reyes, Photocatalytic elimination of bisphenol A under visible light using Ni-doped TiO2 synthesized by microwave assisted sol-gel method. Materials Science in Semiconductor Processing, 71 (2017) 275–282. doi.org/10.1016/j.mssp.2017.08.013
[77] Y. X. Li, X. Wang, C. C. Wang, H. Fu, Y. Liu, P. Wang, and C. Zhao, S-TiO2/UiO-66-NH2 composite for boosted photocatalytic Cr (VI) reduction and bisphenol A degradation under LED visible light. Journal of Hazardous Materials, 399 (2020) 123085.‏   
[78] A. Abdelhaleem, and W. Chu, Photodegradation of 4-chlorophenoxyacetic acid under visible LED activated N-doped TiO2 and the mechanism of stepwise rate increment of the reused catalyst. Journal of Hazardous Materials, 338 (2017) 491–501. doi.org/10.1016/j.jhazmat.2017.05.056
[79] A. B. Lavand, and Y. S. Malghe, Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres. Journal of Asian Ceramic Societies, 3 (2015) 305–310. doi.org/10.1016/j.jascer.2015.06.002.
[80] L.W. Zhang, H.B. Fu, and Y.F. Zhu, Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite-like Carbon. Advanced Functional Materials, 18 (2008) 2180–2189. doi.org/10.1002/adfm.200701478.
[81] W. Wang, J. Yu, Q.Xiang, and B. Cheng, Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2–graphene composites for photodegradation of acetone in air. Applied Catalysis B: Environmental, 119–120 (2012)109–116. doi.org/10.1016/j.apcatb.2012.02.035
[82] Y.J. Xu, Y. Zhuang, and X. Fu, New Insight for Enhanced Photocatalytic Activity of TiO2 by Doping Carbon Nanotubes: A Case Study on Degradation of Benzene and Methyl Orange. The Journal of Physical Chemistry C, 114 (2010) 2669–2676. doi.org/10.1021/jp909855p
[83] C. Young, T. M. Lim, K. Chiang, J. Scott, and R. Amal, Photocatalytic oxidation of toluene and trichloroethylene in the gas-phase by metallised (Pt, Ag) titanium dioxide. Applied Catalysis B: Environmental, 78 (2008) 1–10. doi.org/10.1016/j.apcatb.2007.08.011
[84] A. Strini, S. Cassese,and L. Schiavi,  Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Applied Catalysis B: Environmental, 61(2005) 90–97. doi.org/10.1016/j.apcatb.2005.04.009
[85] L. ZHANG, P. LI, Z. GONG, and A. A. Oni,   Photochemical behavior of benzo[a]pyrene on soil surfaces under UV light irradiation. Journal of Environmental Sciences, 18 (2006) 1226–1232. doi.org/10.1016/S1001-0742 (06)60067-3
[86] S. Yamazaki, H. Tsukamoto, K. Araki, T. Tanimura, I. Tejedor-Tejedor, and M. A. Anderson, Photocatalytic degradation of gaseous tetrachloroethylene on porous TiO2 pellets. Applied Catalysis B: Environmental, 33(2001) 109–117. doi.org/10.1016/S0926-3373(01)00167-9
[87] J. Araña, O. González Dı́az, M. Miranda Saracho, J. M. Doña Rodrı́guez, J. A. Herrera Melián, and J. Pérez Peña,  Photocatalytic degradation of formic acid using Fe/TiO2 catalysts: the role of Fe3+/Fe2+ ions in the degradation mechanism. Applied Catalysis B: Environmental, 32 (2001) 49–61. doi.org/10.1016/S0926-3373(00)00289-7.              
[88] Y. Li, Y. Xie, S. Peng, G. Lu, and S. Li, Photocatalytic hydrogen generation in the presence of chloroacetic acids over Pt/TiO2. Chemosphere, 63 (2006) 1312-1318.
[89] S. Shen, M. Burton, B. Jobson, and L. Haselbach, Pervious concrete with titanium dioxide as a photocatalyst compound for a greener urban road environment. Construction and Building Materials, 35 (2012) 874- 883.
[90] V. Binas, D. Venieri, D. Kotzias, and G. Kiriakidis, Modified TiO2 based photocatalysts for improved air and health quality. Journal of Materiomics, 3 (2017) 3-16.‏
[91] V. Krishnakumar, S. Boobas, J. Jayaprakash, M. Rajaboopathi, B. Han, and M. Louhi-Kultanen,  Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light. Journal of Materials Science: Materials in Electronics, 27 (2016) 7438–7447. doi.org/10.1007/s10854-016-4720-1.
[92] T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, and M. Muneer,  Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Materials Chemistry and Physics, 212 (2018) 325–335. doi.org/10.1016/j.matchemphys.2018.03.052
[93] K. S. Wang, K. Y. Chiang, C. C. Tsai, C. J. Sun, C. C. Tsai, and K. L. Lin, The effects of FeCl3 on the distribution of the heavy metals Cd, Cu, Cr, and Zn in a simulated multimetal incineration system. Environment International, 26 (2001) 257-263.
[94] L. G. Devi, B. N. Murthy, and S. G. Kumar, Photocatalytic activity of TiO2 doped with Zn2+ and V5+ transition metal ions: Influence of crystallite size and dopant electronic configuration on photocatalytic activity. Materials Science and Engineering: B, 166 (2010) 1–6. doi.org/10.1016/j.mseb.2009.09.008.
[95] S. Angkaew, and P. Limsuwan, Preparation of silver-titanium dioxide core-shell (Ag@ TiO2) nanoparticles: Effect of Ti-Ag mole ratio. Procedia Engineering, 32 (2012) 649-655.‏ 
[96] K. H. Ng, C. H. Lee, M. R. Khan, and C. K. Cheng, Photocatalytic degradation of recalcitrant POME waste by using silver doped titania: Photokinetics and scavenging studies. Chemical Engineering Journal, 286 (2016) 282–290. doi.org/10.1016/j.cej.2015.10.072
[97] A. Zielińska, E. Kowalska, J. W. Sobczak, I. Łącka, M. Gazda, B. Ohtani, J. Hupka, and A. Zaleska, Silver-doped TiO2 prepared by microemulsion method: Surface properties, bio- and photoactivity. Separation and Purification Technology, 72 (2010) 309–318. doi.org/10.1016/j.seppur.2010.03.002
[98] H. M. Zaid,  Photodegradation of methylene blue solution via au doped TiO2 nanocomposite catalysts prepared using novel photolysis method. Iranian Journal of Chemistry and Chemical Engineering, 38 (2019) 20–35.
[99] A. El Mragui, Y. Logvina, L. da Silva, Zegaoui, O., and J. C. G. da Silva, Synthesis of Fe- and Co-Doped TiO2 with Improved Photocatalytic Activity Under Visible Irradiation Toward Carbamazepine Degradation. Materials, 12 (23). doi.org/10.3390/ma12233874.
[100] L.F. Chiang, and R.A. Doong, Cu–TiO2 nanorods with enhanced ultraviolet- and visible-light photoactivity for bisphenol A degradation. Journal of Hazardous Materials, 277 (2014) 84–92. doi.org/10.1016/j.jhazmat.2014.01.047
[101] G. G. Nakhate, V. S. Nikam, K. G. Kanade, S. Arbuj, B. B. Kale, and J. O. Baeg, Hydrothermally derived nanosized Ni-doped TiO2: A visible light driven photocatalyst for methylene blue degradation. Materials Chemistry and Physics, 124 (2010) 976–981. doi.org/10.1016/j.matchemphys.2010.08.007.
[102] L. Jiang, Y. Huang, and T. Liu, Enhanced visible-light photocatalytic performance of electrospun carbon-doped TiO2/halloysite nanotube hybrid nanofibers. Journal of Colloid and Interface Science, 439 (2015) 62–68. doi.org/10.1016/j.jcis.2014.10.026
[103] T. S. Natarajan, K. Natarajan, H. C. Bajaj, and, R. J. Tayade, Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. Journal of Nanoparticle Research, 15 (2013) 1669. doi.org/10.1007/s11051-013-1669-3