Document Type : Research Paper


1 Chemical Engineering Department, University of Technology, Alsina'a street 52,10066 Baghdad, Iraq.

2 Chemical Engineering Department University of Technology Alseenaa Street 52 P.O.BOX 35010 Baghdad-Iraq


In the current work, sulfur was removed from actual diesel fuel containing 1.2 wt.% sulfur from the Al-Dura Oil Refinery (Iraq), which was studied using adsorption desulfurization with the spherical mesoporous silica MCM-41. This study investigated the effects of different operating conditions, including the dose of MCM-41 (0.04-0.2 gm), time (60-180 min), and temperature (30-70°C). The optimal working conditions were determined to be 0.4 gm MCM-41, 180 min, and 70°C. After exploring the isotherm models of Langmuir, Freundlich, and Temkin, Temkin models with a correlation coefficient (R2 = 0.9996) were selected to best represent the stable data. The kinetics of sulfur components on MCM-41 were studied using pseudo-first-order and pseudo-second-order kinetic models and intra-particle diffusion. A pseudo-first-order adsorption kinetic model with a correlation coefficient (R2) of 0.9867 can accurately represent the adsorption process. Gibbs free energy (ΔGo), enthalpy (ΔHo), and entropy (ΔSo) were calculated as thermodynamic parameters. The adsorption of total sulfur-containing compounds onto mesoporous silica was spontaneous, endothermic, and increased the irregularity of the sulfur compounds on the surface of the adsorbent. The total sulfur content of actual diesel fuel was reduced from 1.2% to 0.84%, corresponding to a desulfurization efficiency of 29.72%. Consequently, the findings of this study might be used as a starting point for future research.

Graphical Abstract


  • Nanoporous silica MCM-41 was very successful in removing sulfur.
  •  All of the MCM-41 Characteristic properties were highly improved.
  •  At 180 min, 70 C° and 0.4 gm of MCM-41demonstrated efficiency in removing sulfur at 29.72%.


Main Subjects

[1] A. A. Nuhu, Bio-catalytic Desulfurization of Fossil Fuels: A Mini-Review, Rev Env. Sci, Biol, 12 (2012) 9-23.
[2]  M. Soleimani, A. Bassi, A. Margaritis, Biodesulfurization of Refractory Organic Sulfur Compounds in Fossil Fuels, Bio.Adv, 25 (2007) 570-596.
[3] J. Calzada, A. Alcon, V. E. Santos, F. Garcia-Ochoa, Mixtures of Pseudomonas Putida CECT 5279 Cells of Different Ages: Optimization as Biodesulfurization Catal. Proc. Bio. 46 (2011) 1323-1328.
[4] H. H. Dabaghi, M. Kazemzad, Y. Ganjkhanlou, A. A. Yuzbashi, Electrochemical Preparation of New Organosilicon Compounds for Functionalizing of Mesoporous Silica, Functional Materials Letters, 6 (2013) 1350031-1350034.
[5] H. H. Andevary, A. Akbari, M. Omidkhah, highly efficient and selective oxidative desulfurization of diesel fuel using dual-function [Omim] FeCl4 as catalyst/extractant. Fuel. Proc. Tech. 185 (2019) 8–17. c.2018.11.014.
[6] R.-M. Gao, J.-S. Zhao, Different supports of modified heteropoly acid for ultra-deep oxidative desulfurization: a newly accessible shaped catalyst and the DFT cluster model study. Fuel 237 (2019) 840–850.
[7] A. Swapnil, N.  Mahesh, Varma, Z. Shende, and K. L. Was war, Synthesis, characterization and application of 1-butyl-3 methylimidazolium chloride as a green material for extractive desulfurization of liquid fuel, The Sci. Wor. J. (2013).  
[8]   C. Sentorun-Shalaby, S. K. Saha, C. Song, Mesoporous molecular- sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-low-sulfur diesel fuel, Appl Cata. B. 101 (2011) 718–726.     
[9] Y. A. Abd Al-Khodor, T. M. Albayati, Adsorption Desulfurization of Actual Heavy Crude Oil Using Activated Carbon, Eng. and Tech. J., 38 (2020) 1441-1453. 10.30684/etj.v38i10A.615
[10] Abdullah, H. Ghassan, M. Kadhom, S. Salih, H. N. Mohammed, S. A. Gheni, and S. M. R. Ahmed, Functionalized Multiwall Carbon Nanotube Electrode for Electrochemical Oxidation of Dibenzothiophene in Diesel, Petr. & Coal. 63 (2021) 3.
[11] L. Lin, L. Hong, Q. Jianhua, X. Jinjuan, Progress in the technology for desulfurization of crude oil, China. Petrol Proc. Petr. Tech., 5 (2010) 355–6.
[12]  M. Shakirullah, I. Ahmad, W. Ahmad, M. Ishaq, Desulphurization study of petroleum products through extraction with aqueous ionic liquids, J. Chil. Chem. Soc. 55 (2010) 179-83.  
[13]  A. Mohamed, M. R. Betiha, S. Hoda, A. Ahmed, F. Mohamed, Oxidative desulfurization using graphene and its composites for fuel containing thiophene and its derivatives: An updated review, Egypt. J. Pet. 27 (2018) 715–30.
[14]  L. Mguni, Y. Yali, L. Xinying, D. Hildebrandt, G. David, Desulphurization of diesel fuels using intermediate Lewis acids loaded on activated charcoal and alumina, Chem. Eng. 206 (2019) 572–80.
[15]  A. Kashif, U. S. Solat, Methods for desulphurization of crude oil - a review, Sci. Int. 28 (2016) 1169–73.
[16] I. Ahmed, S. H. Jhung, Composites of metal-organic frameworks: preparation and application in adsorption, Mater.Tod. 17 (2014) 136-146.
[17]  J. M. Palomino, D. T. Tran, A. R. Kareh, C. A. Miller, J. M. Gardner, H. Dong, S. R. Oliver, Zirconia-silica based mesoporous desulfurization adsorbents, J. of Pow. Sou., 278 (2015)141-148.
[18]  T. A. Saleh, Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated Carbon, J.of Clea. Prod. 172 (2018) 2123-2132. rights and content.
[19] M. Tymchyshyn, M, Deep desulphurization of diesel fuels, Lakehead University, (2008).
[20] A. Takahashi, F. H. Yang, R. T. Yang, New sorbents for desulfurization by π-complexation: thiophene/benzene adsorption, Indu. & Eng. Chem. Research, 41(2002) 2487-2496.
[21] A. D. Hammad, Z. Yusuf, N. Al-Rasheedi, In-situ electrochemical desulfurization of crude oil and its fraction, Saudi Aramco J. of Techn. (2012) 1-5. 10.30684/etj.v38i10A.615.
[22]  H. Kalavathy, B. Karthik, L. R. Miranda, Removal and recovery of Ni and Zn from aqueous solution using activated Carbon from Hevea Brasiliense’s: batch and column studies. Colloids and Surfaces B: Bio interfaces, 78 (2010) 291-302.
[23]  G. Yu, S. Lu, H. Chen, Z. Zhu, Diesel fuel desulfurization with hydrogen peroxide promoted by formic acid and catalyzed by activated Carbon, Carbon, 43 (2005) 2285-2294.
[24] T. M. Albayati, Application of nano porous material MCM-41 in a membrane adsorption reactor (MAR) as a hybrid process for removing methyl orange, Desal. and Water Treat. 151 (2019) 138–144. https://doi:10.5004/dwt.2019.23878.
[25] Y. Chen, X. Shi, B. Han, H. Qin, Z. Li, Y. Lu, Y, Kong, The Complete Control for the Nanosize of Spherical MCM-41, J. Nanosci. Nanot., 12 (2012) 7239-7249.
[26] H. Song, Y. Chang, H. Song, Deep adsorptive desulfurization over Cu, Ce bimetal ion-exchanged Y-typed molecule sieve, Adsorption 22 (2016) 139–150. 0-015-9731-3.
[27] I. Al Zubaidi, N. N. Darwish, Y. El Sayed, Z. Shareefdeen, Z. Sara, Adsorptive desulfurization of commercial diesel oil using granular activated charcoal, Int. J. Adv. Chem. Eng. Biol. Sci, 2 (2015) 15-18. 
[28] M. T.  Reza, S. Reza, H.  Sudeh, Dynamic filtration and static adsorption of lead ions in aqueous solution using composite polysulfone membranes with nano-size MCM-41 particles coated by polyaniline, Envi. Sci. and Poll. Res. 25 (2018) 20217- 20230. 
[29]   S. M. Alardhi, T. M. Albayati, J. M. Alrubaye, Adsorption of the methyl green dye pollutant from aqueous solution using mesoporous materials MCM-41 in a fixed-bed column, Heli. 6 (2020) e03253. .
[30] H. Faghihian, S. h. Naeemi, Application of a Novel Nanocomposite for Desulfurization of a Typical Organ Sulfur Compound, Iran. J. Chem. Chem. Eng. (IJCCE), 32 (2013) 9-15.
[31] T. M. Albayati and K. R. Kalash, Polycyclic aromatic hydrocarbons adsorption from wastewater using different prepared mesoporous materials MCM-41in batch and fixed-bed column. Proc. Safety and Envi. Prot. 133 (2020) 124–136.
[32] Y. A. Abd Al-Khodor, T. M. Albayati, Employing sodium hydroxide in desulfurization of the essential heavy crude oil: Theoretical optimization and experimental evaluation, Proc. Safety and Envi. Pro. 136 (2020) 334-342.
[33] S. M. Alardhi, J. M. Alrubaye, T. M. Albayati, Adsorption of Methyl Green Dye onto MCM-41: Equilibrium, Kinetics and Thermodynamic Studies, Desal. and Water Treat.179 (2020) 323–331.       
[34] T. Zhang, W. L. Li, X. X.  Chen, H. Tang, Q. Li, J. M. Xing, H. Z. Liu, Enhanced Biodesulfurization by Magnetic Immobilized Rhodococcus Erythropolis LSSE8-1-Vgb Assembled with Nano-γ-Al2O3, World J Mic. Bio. 27 (2011) 299-305.
[35] A. Sayari, P. Liu, M. Kruk, M. Jaroniec, Characterization of Large-Pore MCM-41 Molecular Sieves Obtained via Hydrothermal Restructuring. Chem. of Mater. 9 (1997) 2499-2506.
[36] K. Zakaria, B. Bouhadjar, K. Zahira, O. Rachida, C. Noureddine, V. Didier, H. Rachida, Key factor affecting the basicity of mesoporous silicas MCM-41: effect of surfactant extraction time and Si/Al ratio, Chem. Papers. (2017) 1-12.
[37] T. M. Albayati, A. A. Jassam, Experimental Study of Drug Delivery system for Prednisolone Loaded and Released by Mesoporous Silica MCM-41, Al-Khwarizmi Eng. J. 15 (2019) 117- 124.  
[38] T. M. Albayati, A. M. AlKafajy, Mesoporous Silica MCM-41 as a Carriers Material for Nystatine Drug in Delivery System, Al-Khwarizmi Eng. J. 15 (2019) 34- 43.
[39] M., Broyer, S., Valance, J. P. Bellat, O. Bertrand, G. Weber, Z.  Gabelica, Influence of ageing, thermal, hydrothermal, and mechanical treatments on the porosity MCM-41 mesoporous silica. Langmuir, 18 (2002) 5083-5091.
[40] S. T.  Grecco, U. Ernesto, E. Reyes, M. Opurtus, Influence of Temperature and Time of seed ageing on the properties of beta zeolite/MCM-41 material. J. of the Brazilian Chem. Soci., 25 (2014) 2445- 2353. 
[41] Ortiz-Bustos, J., Martín, A., Morales, V., Sanz, R. and García-Muñoz, R.A., Surface-functionalization of mesoporous SBA-15 silica materials for controlled release of methylprednisolone sodium hemi succinate: Influence of functionality type and incorporation strategies. Microporous and Mesoporous Materials, 240, (2017) 236-245.
[42] Shah, P.V. and Rajput, S.J., A comparative in vitro release study of raloxifene encapsulated ordered MCM-41 and MCM-48 nanoparticles: a dissolution kinetics study in simulated and biorelevant media. J. of Drug. Del. Sci. and Tech., 41, (2017) 31-44.
[43] A. Adeyi, F. Abekanmi, Comparative analysis of adsorptive desulphurization of crude oil by manganese dioxide and zinc oxide, Research J. of Chem. Scie. 2 (2012)14-20.
[44] S. Houda, C.  Lancelot, P. Blanchard, L. Poinel, C. Lamonier, Oxidative Desulfurization of Heavy Oils with High Sulfur Content: A Review, Cata. 8 (2018) 344.
[45]  C. Marín-Rosas, L. F. Ramírez-Verduzco, F. R. Murrieta-Guevara, G.Hernandez-Tapia, L. M Rodríguez-Otal, Desulfurization of low sulfur diesel by adsorption using activated carbon: adsorption isotherms, Indus.& Eng. chem. rese., 49 (2010) 4372-4376.
[46]  N. K. Ibrahim, S. K. Aljanabi, Desulfurization and kinetic study of diesel fuel by batch adsorption on activated carbon. Eng. .and Tech. J., 33 (2015). 10.30684/etj.v38i10A.615
[47] S. H. Azman, A. Afandi, B. Hameed, A. M. Din, Removal of Malachite Green from Aqueous Phase Using Coconut Shell Activated Carbon: Adsorption, Desorption, and Reusability Studies, J. of Appl. Scie. and Eng. 21(2018) 317-330.  
[48]  S. M. Jabbar, Desulfurization of Al-Ahdab Crude Oil using Adsorption-Assisted Oxidative Process, PhD Thesis, University of Technology, (2013).
[49] S. Velu S. Velu, Ma. Xiaoliang, C. Song, Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents, Ind. & Eng. Chem. Rese. 42 (2003) 5293-5304.
[50] M. M. Muzic, Z. Gomzi, K. Sertic-Bionda, Analysis of continuous fixed bed adsorptive desulfurization of diesel fuel, Faculty of Chem. Eng. and Tech. (2009).
[51] I. Langmuir, The constitution and fundamental properties of solids and liquids, Part I. Solids. J. of the American Chem. Soci., 38 (2016) 2221-2295.
[52] K. Vijayaraghavan, T. V. N. Padmesh, K. Palanivelu, M. Velan, Biosorption of nickel (II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models, J. of Haz. Mater., 133 (2006) 304-308.
[53] G. I. Danmaliki, T. A. Saleh, Effects of bimetallic Ce/Fe nanoparticles on the desulfurization of thiophenes using activated Carbon, Chem. Eng. J., 307, (2017) 914-927.
[54] M. A. Al-Ghouti, D. A. Dana, Guidelines for using and interpreting adsorption isotherm models: A review, J. of Haz. Mater. 122383 (2020).
[55]   M. Hosseini, S. F. Mertens, M. Ghorbani, M. R. Arshadi, Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media, Mater. Chem. and Phy. 78 (2003) 800-808.
[56] T. A. Saleh, K. O. Sulaiman, S. A. AL-Hammadi, H. Dafalla, & G. I. Danmaliki, Adsorptive desulfurization of thiophene, benzothiophene and dibenzothiophene over activated carbon-manganese oxide nanocomposite: with column system evaluation, J. of Clea. Prod., 154 (2017) 401-412.
[57] M. Nkosi, Desulphurization of Petroleum Distillates Using Adsorption Method (Doctoral dissertation, University of the Witwatersrand, Faculty of Eng. and the Built Env., Sch. of Chem. and Meta. Eng.) (2014).
[58] T.  M. Albayati, A. A. Sabri, D. B. Abed, Functionalized SBA-15 by amine group for removing Ni (II) heavy metal ion in the batch adsorption system, Desal. and Water Treat. 174 (2020) 301–310. http://doi:10.5004/dwt.2020.24845
[59] C. D. Smedt, F. Ferrer, K. Leus   P. Spanoghe., Removal of Pesticides from Aqueous Solutions by Adsorption on Zeolites as Solid Adsorbents, Adsorption Sci. & Tech., 33 (2015) 457-484.
[60] R. G. Pratibha, P. K. Jayant, Isotherm and Kinetics of Desulphurization of Diesel by Batch Adsorption Studies, International J. of Chem. Eng. Res. 10 (2018) 1-16.    
[61] I. A. W. Tan, A. L. Ahmad, B. H. Hameed, Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated Carbon, J. of Haz. Mater., 164 (2009) 473-482.
[62] A. A. Olajire, J. J. Abidemi, A. Lateef, N. U. Benson, Adsorptive desulphurization of model oil by Ag nanoparticles-modified activated carbon prepared from brewer's spent grains, J. of Env. Chem. Eng., 5 (2017)147-159.
[64] H.S. Wahab, A.A. Hussain, Photocatalytic oxidation of phenol red onto nanocrystalline TiO2 particles, J. of Nano. in Chem., 6 (2016) 261-74.
[65] J. Zhang, C. Wu, A. Jia and B. Hu, Kinetics, equilibrium and thermodynamics of the sorption of p-nitrophenol on two variable charge soils of Southern China, Appl. Surf. Sci., 298 (2014) 95-101.
[66] J.C. García-Martínez, H.A. González-Uribe, M.M. González-Brambila, N.F. del Río, A.López-Gaona, L.Alvarado-Perea, and J.A. Colín-Luna,. Effect of Ni on MCM-41 in the Adsorption of Nitrogen and Sulfur Compounds to Obtain Ultra-Low-Sulfur Diesel. Top. in Cata. 61 (2018) 1721-1733.
[67] S. Dasgupta, P. Gupta, A. Nanoti, A.N. Goswami, M.O. Garg, E.Tangstad, Ø.B. Vistad, A.Karlsson, and M. Stöcker, Adsorptive desulfurization of diesel by regenerable nickel-based adsorbents. Fuel, 108 (2013) 184-189.
[68] O.O. Sadare, I.M. Masitha, and M.O. Daramola, April. Synthesis, Characterization and Performance Evaluation of Pure Silica MCM-41 for Effective Removal of Dibenzothiophene from Petroleum Distillate. In IOP Conference Series: Mat. Sci. and Eng.1107(2021) 1012041. IOP Publishing. https://doi:10.1088/1757-899X/1107/1/012041  
[69] V Sales, H.O. Moura, A.B. Câmara, E. Rodríguez-Castellón, J.A. Silva, S.B. Pergher, L.Campos, M.M. Urbina, T.C. Bicudo, and L.S. de Carvalho, Assessment of Ag nanoparticles interaction over low-cost mesoporous silica in deep desulfurization of diesel. Cata. 9 (2019) p.651.