Document Type : Research Paper

Authors

Mechanical Engineering Dept., University of Technology-Iraq, Alsina’a street,10066 Baghdad, Iraq.

Abstract

The present work aims to study the effects of working fluids on the thermal performance of the heat pipe with a wick and in a horizontal position. The experiments were conducted using a copper heat pipe with a 20.8 mm inner diameter, and the length of the evaporator, condenser, and the adiabatic regions were 300 mm, 350 mm, and 300 mm, respectively. The working fluids selected were water, Methanol, ethanol, and different binary mixtures (50: 50) %, (30: 70) %, (70: 30) % mixing ratios. The filling ratio was 50% of the evaporator volume for all working fluids, and the heat input values were 20, 30, 40, and 50 W. The results show that the heat pipe charged with Methanol has a thermal resistance of (0.85166oC/W), the lowest thermal resistance value. The lowest thermal resistance of using mixtures is (0.785 oC/W) for (50 % methanol: 50% ethanol). Both are achieved at 50 W heat input. Also, at 50 W heat input, the highest value of heat transfer coefficient when using water as a working fluid is (510.386 W/m2. oC), and for using a mixture (70 % water: 30% methanol) is (556.78 W/m2. oC).

Graphical Abstract

Highlights

  • The thermal resistance is inversely proportional to the heat input, and the heat transfer coefficient is directly proportional to the heat input.
  •  Methanol has a lower thermal resistance of (0.85166 °C/W), while the lowest thermal resistance of 50 % methanol: 50% ethanol is (0.785 °C/W).
  • The highest value of heat transfer coefficient when using water as a working fluid is (510.386 W/m2. °C).

Keywords

Main Subjects

[1] O. T. Fadhil, & A. M.  Saleh, Thermal performance of a heat pipe with sintered powder metal wick using ethanol and water as working fluids. Anbar Journal for Engineering Sciences., 4 (2011)  62-71.‏ ISO 690
[2] D. Reay & P. Kew, Heat pipes theory, design and applications, fifth ed. Butterworth-Heinemann, 2006.
[3] Z. Bahman, Heat Pipe Design and Technology, CRC Press. Taylor & Francis Group; 2011.
[4] M. Akyurt, Development of Heat Pipes for Solar Water Heaters J. Solar Energy., 32 (1984) 625- 631. doi.org/10.1016/0038-092X(84)90138-5.
[5] R. Manimaran, K. Palaniradja, N. Alagumurthi, & K. Velmurugan, An investigation of thermal performance of heat pipe using Di-water. Sci Technol., 2 (2012) 77-80.doi: 10.5923/j.scit.20120204.04.
[6] F N. Ashok, & K. V. Mali, Thermal Performance of Thermosyphon Heat Pipe Charged with Binary Mixture. International Journal of Science, Engineering and Technology Research., 4 (2015) 92-102 . doi: 10.1080/089161500269517.
[7] J. J. Raghuram, K. P. Kumar, G. V.Khiran, K. Snehith, & S. B. Prakash, (2017, August). Thermal performance of a selected heat pipe at different tilt angles. In IOP Conference Series: Materials Science and Engineering (Vol. 225, 012043). IOP Publishing , doi: 10.1088/1757-899X/225/1/012043.
[8] Kim, Yeonghwan, et al. Boiling and condensation heat transfer of inclined two-phase closed thermosyphon with various filling ratios. Applied Thermal Engineering 145 (2018) 328-342, doi.org/10.1016/j.applthermaleng.2018.09.037.
[9] P. Charoensawan, & P. Terdtoon, Thermal performance of horizontal closed-loop oscillating heat pipes, Applied Thermal Engineering 28 (2007) 460–466. 2008, doi.org/10.1016/j.applthermaleng.2007.05.007.   
[10] K. H. Chien, Y.T. Lin, Y. R. Chen, K. S. Yang, and C. C. Wang, A Novel Design of Pulsating Heat Pipe With Fewer Turns Applicable to All Orientations, International Journal of Heat and Mass Transfer., 55 (2012) 5722 – 5728.doi.org/10.1016/j.ijheatmasstransfer.2012.05.068.
[11] C. Y. Tseng, K. S. Yang, K. H. Chien, M. S. Jeng , and C. C. Wang ,Investigation of the performance of pulsating heat pipe subject to uniform/alternating tube diameters, Experimental Thermal and Fluid Science., 54 (2014) 85–92.  doi.org/10.1016/j.expthermflusci.2014.01.019 .
[12] M L. Rahman, S. Nawrin, and R. A Sultan, Fariha Mir, and Mohammed Ali, Effect of fin and insert on the performance characteristics of close loop pulsating heat pipe CLPHP , Procedia Engineering 105 (2015) 129 – 136.
[13] S. M. Peyghambarzadeh, S. Shahpouri, N. Aslanzadeh, & M. Rahimnejad, Thermal performance of different working fluids in a dual diameter circular heat pipe. Ain Shams Engineering Journal., 4 (2013) 855-861. doi.org/10.1016/j.asej.2013.03.001.
[14] ‏ H. H. Ahmad, & A Yousif, A. Comparison between a Heat Pipe and a Thermosyphon Performance with Variable Evaporator Length_ENG. Al-Rafidain Engineering Journal (AREJ)., 21(2013)1-12. doi: 10.33899/rengj.2013.72814.‏
[15] V. D. Ghadage, S. V. Mutalikdesai Effect of Mixture of Ethanol-Methanol as a Working Fluid on Heat Transfer Characteristics of Thermosyphon, International Journal of Current Engineering and Technology., (2016) 441-445. DOi:http://Dx.Doi.Org/10.14741/Ijcet/22774106/spl.5.6.2016.82
[16] S. K. Chandrasekaran, & K.  Srinivasan, Experimental studies on heat transfer characteristics of SS304 screen mesh wick heat pipe. Thermal Science, 21, suppl., 2 (2017) 497-502. doi: 10.2298/TSCI17S2497C.‏
[17] A. K. Mozumder, A. F.Akon, , M. S. H Chowdhury, & S. C.  Banik, Performance of heat pipe for different working fluids and fill ratios. Journal of Mechani,cal Engineering., 41(2010) 96-102. doi.org/10.3329/jme.v41i2.7473.
[18] K. Bogarrasa, & M. Khlifa, Effect of Pure and Binary Azeotropic Fluids on Heat Pipes Performance. Advanced Journal of Chemistry-Section A., 3 (2020) 442-453. doi:10.33945/SAMI/AJCA.2020.4.6.
[19] D.  Dhingra, Thermo-physical Property Models and Effect on Heat Pipe Modelling, 2014.
[20] G. Kumaresan, S. Venkatachalapathy, L. Asirvatham, S.Wongwises, Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids, Int. Commun. Heat Mass Transfer., 57 (2014) 208–215. doi.org/10.1016/j.icheatmasstransfer.2014.08.001.
[21] G. Kumaresan, S. Venkatachalapathy, L. Asirvatham, Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids., 72(2014) 507-516 .https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.029