Document Type : Research Paper


1 Chemistry Engineering Dept, QuaidE Millath Government College for Women, Chennai, Tamil Nadu, India, 600 002.

2 Ariviya Technologies, Chinnaya Street, Pattukkottai, India - 600017

3 Department of Chemistry, SRM Valliammai Engineering College, SRM Nagar, Kattankulathur, Chennai, Tamil Nadu, India 603203

4 Dean, Science & Humanities, Rajalakshmi Engineering College, Thandalam, Chennai, Tamil Nadu, India, 602 105


The performance of membranes for a specific application can be determined with the help of structural properties such as molecular weight cut-off (MWCO), morphology, and pore statistics. Heavy metal ions from aqueous streams can be separated with the help of ultrafiltration membranes. In the presence and absence of the various components of the additive poly (ethylene glycol) 600, MWCOs and pore statistics of polyurethane (PU) and carboxylated polysulfone (CPSf) blend ultrafiltration (Total Polymer Concentration = 17.5 wt %) were studied with the help of dextran of different molecular weights ranging from 19 kDa to 150 kDa. The derived pore size, porosity, and the number of pores have a remarkable relationship with the MWCO, morphology, and the flux performance of the membranes. The blend membranes rejected certain toxic divalent heavy metal ions such as copper, cadmium, nickel, and zinc by complexing them into a polymeric ligand, poly(ethyleneimine) (PEI). The effect of polymer blend compositions and additive concentrations on metal ions' rejection and permeate flux are discussed

Graphical Abstract


  • Polymer blend membranes composed of polyurethane and carboxylated polysulfone  fabricated
  • An additive polyethylene glycol 600 is used for morphology-controlled membranes
  • PU/CPSf  (80/20 and 75/25 %)  concentration was found to  be optimum
  • Toxic heavy metal ions  (Cu2+, Ni2+, Zn2+, and Cd2+) were separated by complexing them with polyethyleneimine.


Main Subjects

[1] R.S. Hebbar,   A.M. Isloor  and  A. F. Ismail,  Preparation and evaluation of heavy metal rejection properties of polyetherimide/porous activated bentonite clay nanocomposite membrane, RSC Adv., 2014,4, 47240-47248
[2] H.RavishankarJ.Christy, and V. Jegatheesan, Graphene Oxide (GO)-Blended Polysulfone (PSf) Ultrafiltration Membranes for Lead Ion Rejection, Membranes (Basel).  8 (2018) 77.
[3] S. Velu, L. Muruganandam and G.  Arthanareeswaran. Performance Enhancement of Polysulfone Ultrafiltration Membrane by Blending with Polyurethane Hydrophilic Polymer, J.polym.Engg. 31 (2011)125-131.
[4] S. Velu, L. Muruganandam and G. Arthanareeswaran. Preparation and performance studies on polyethersulfone ultrafiltration membranes modified with gelatin for treatment of tannery and distillery wastewater, Braz. J. Chemi. Engg., 32 (2011) 179 – 189. 
[5] C-S .Wu, H-T. Liao, Interface design and reinforced features of arrowroot (Maranta arundinacea) starch/polyester-based membranes: Preparation, antioxidant activity, and cytocompatibility. Materials Science and Engineering: C, 70(2017) 54-61. https://doi.10.1016/j.msec.2016.08.067 
[6] A.Strzelewicz , M. Krasowska, G.Dudek , M. Cieśla,  Design of polymer membrane morphology with prescribed structure and diffusion properties, Chemical Physics , 531 (2020) 110662.
[7] M. Sivakumar, R. Malaisamy C.J. Sajitha, D. Mohan and V. Mohan and R. Rangarajan ,Preparation and performance of cellulose acetate–polyurethane blend membranes and their applications – II”, J. Membr Sci., 169 (2000) 215 – 228.
[8] S. R. Panda and S. De ,Preparation, characterization and antifouling properties of polyacrylonitrile/polyurethane blend membranes for water purification, RSC Adv, 5 (2015) 23599-23612.
[9] M. Haponska, A.Trojanowska, A. Nogalska, R. Jastrzab,T.  Gumi, B. Tylkowski, PVDF Membrane Morphology—Influence of Polymer Molecular Weight and Preparation Temperature. Polymers, 9 (2017) 718.
[10] J. D. S. Burgal, L.Peeva, P.Marchetti, A. Livingston, .Controlling molecular weight cut-off of PEEK nanofiltration membranes using a drying method. Journal of Membrane Science, 493 (2015) 524-538. https://doi.10.1016/j.memsci.2015.07.012 
[11] K. C. Khulbe, C. Y. Feng, Takeshi Matsuura, (2008). [Springer Laboratory] Synthetic Polymeric Membranes || Pore Size, Pore Size Distribution, and Roughness at the Membrane Surface, 101–139. https://doi.10.1007/978-3-540-73994-4_5 
[13] N. Mkheidze , R.Gotsiridze , S. Mkheidze , D.Pattyn, Determination of the Polymeric Membranes Pore Size Distribution by the Method of Capillary Flow Porometry, Bulletin Of The Georgian National Academy Of Sciences, 14 (2020).
[15] L. Melita, F. Gumrah, M. Amareanu, Porous polymer membranes used for wastewater treatment, Membr. Wat. Treat. 5 (2014)  147-170.
[16] Yanhui Wu, Guangqin Tian Huifen Tan, Xiaoting Fu, Pervaporation of phenol wastewater with PVDF-PU blends membrane, Desalin. Water Treat. 51 (2013) 5311-5318.
[17] C. Nie, L. Ma, Y. Xia C. He, J. Deng, L. Wang, C. Cheng, S. Sun and C. Zhao , Novel heparin-mimicking polymer brush grafted carbon nanotube/PES composite membranes for safe and efficient blood purification, J. Membr. Sci., 475 (2015) 455-468.
[18] C. S. Latha, D. Shanthanalakshmi, D. Mohan, K. Balu and M. D. K. Kumarasamy , Polyurethane and carboxylatedpolysulfone blend ultrafiltration membranes I. Preparation and Characterizations, J. Appl. Polym. Sci., 97 (2005) 1307 – 1315.
[19] S.M. J. Zaidi, Polymer sulfonation: a versatile route to prepare proton-conducting membrane material for advanced technologies, The Arabian J. Sci. and Egg. 28 (2003) (2B) 183-194.
[20] Y. Huang, X. Feng, Polymer-enhanced ultrafiltration: Fundamentals, applications and recent developments. Journal of Membrane Science, 586 (2019) 53-83.
R. Malaisamy, D.R. Mohan, M. Rajendran, Polyurethane and sulfonated polysulfone blend ultrafiltration membranes. I. Preparation and characterization studies, J. Colloid Int. Sci., 254 (2002) 129-140.