Document Type : Research Paper

Authors

1 laser and Optoelectronics department, University of Technology, Baghdad, Iraq

2 laser and Optoelectronics Department, University of Technology, Baghdad, Iraq

3 Laser and Optoelectronics Engineering Dept., University of Technology-Iraq, Alsina’a Street, 10066 Baghdad, Iraq.

Abstract

 The current study proposes a developing surface plasmon resonance (SPR) sensor that has been widely employed to detect viruses, such as environmental analytes, biological and chemical analytes, and monitoring and medical diagnostics. Optical waveguides have much potential for developing new chemical and biological sensors. Graphene is the world's most vital substance and can be used to enhance other materials. A composite silver film-based SPR sensor with the waveguide. To enhance the silver film's stability, detect the best thickness with the best resonance using different types of analyte: air than 1.1, 1.2, 1.3, and water. The resonance wavelength numerically calculated, loss, sensitivity, Figure of merit FOM, and Refractive index using Lumerical FDE. The numerical data showed the differences in the electric field of SPR in the number of refractive indexes after applying the silver coating layer, and the performance parameters improved. Moreover, Graphene has much promise, yet almost most of it is still unexplored. The fundamentals of graphene-based waveguides and devices were investigated using two layers with FDE. The primary purpose of this study is to show the effective thickness of the Graphene and the analyte's refractive index to get high absorption.

Graphical Abstract

Highlights

  • Adding the graphene layer at different thicknesses increases the electric field in the refractive index range.
  • Increasing Graphene thickness directly affected the increasing loss.
  • Sensitivity for sensor-based Graphene is always crucial for any applications which increase with increasing graphene thickness.

Keywords

Main Subjects

[1] R. C. C. Jorgenson and S. S. S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance, Sensors Actuators B Chem., 12 (1993) 213–220, doi: 10.1016/0925-4005(93)80021-3
[2] R. C. Jorgenson, C. Jung, S. S. Yee, and L. W. Burgess, Multi-wavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples, Sensors Actuators B. Chem., 14 (1993) 721–722. doi: 10.1016/0925- 4005(93)85158-7
[3] J. Homola, Optical fiber sensor based on surface plasmon excitation, Sensors Actuators B. Chem., 29 (1995) 401–405. doi: 10.1016/0925-4005(95)01714-3
[4] B. Liedberg, C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing, Sensors and Actuators., 4 (1983) 299–304. doi: 10.1016/0250-6874(83)85036-7
[5] D. R. Shankaran, K. V. Gobi, and N. Miura, Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest, Sensors Actuators, B Chem., 121 (2007) 158–177. doi: 10.1016/j.snb.2006.09.014
[6] S. A. Maier, “Plasmonics: Fundamentals and applications,” Plasmon. Fundam. Appl.,  5 (2007) 1–223, 2007. doi: 10.1007/0-387-37825-1
[7] K. Matsubara, S. Kawata, and S. Minami, Optical chemical sensor based on surface plasmon measurement, Appl. Opt., 27 (1988) 1160. doi: 10.1364/ao.27.001160
[8] O. A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Zeitschrift für Phys., 216 (1968) 398–410. doi.org/10.1007/BF01391532
[9] R. D. Harris and J. S. Wilkinson, Waveguide surface plasmon resonance sensors, Sensors Actuators B. Chem., 29 (1995) 261–267. doi: 10.1016/0925-4005(95)01692-9
[10] R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, Surface-plasmon resonance effect in grating diffraction, Phys. Rev. Lett., 21 (1968) 1530–1533. doi: 10.1103/PhysRevLett.21.1530
[11] D. J. Webb, Research activities arising from the University of Kent, Photonic Sensors, 1 (2011) 140–151. doi: 10.1007/s13320-011-0030-7
[12] S. Thongrattanasiri, F. H. L. Koppens, and F. J. García De Abajo, Complete optical absorption in periodically patterned Graphene, Phys. Rev. Lett., 108 (2012) 1–5. doi: 10.1103/PhysRevLett.108.047401
[13] M. Piliarik, H. Vaisocherová, and J. Homola, A new surface plasmon resonance sensor for high-throughput screening applications, Biosens. Bioelectron., 20 (2005) 2104–2110. doi: 10.1016/j.bios.2004.09.025
[14] Q. Duan, Y. Liu, S. Chang, H. Chen, and J. H. Chen, Surface plasmonic sensors: Sensing mechanism and recent applications, Sensors, 21 (2021) 12–25. doi: 10.3390/s21165262
[15] S. A. Taya, M. M. Shabat, and H. M. Khalil, Enhancement of sensitivity in optical waveguide sensors using left-handed materials, Optik (Stuttg)., 120 (2009) 504–508, doi: 10.1016/j.ijleo.2007.12.001.
[16] S. K. Selvaraja and P. Sethi, Review on Optical Waveguides, Emerg. Waveguide Technol., 1 (2018) 22–31. doi: 10.5772/intechopen.77150
[17] A. L. Washburn and R. C. Bailey, Photonics-on-a-chip: Recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications, Analyst, 136 (2011) 227–236. doi: 10.1039/c0an00449a
[18] P. Kozma, F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, Integrated planar optical waveguide interferometer biosensors: A comparative review, Biosens. Bioelectron., 58 (2014) 287–307, doi: 10.1016/j.bios.2014.02.049.
[19] K. J. Ebeling, Strip Waveguides, in Integrated Optoelectronics, Springer., 1993, 75–108.
[20]  V. I. Nalivaiko and M. A. Ponomareva, Comparison of Characteristics of Waveguide Refractometric Sensors, Opt. Spectrosc., 127 (2019) 1128–1132. doi: 10.1134/S0030400X19120154
[21] M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: A review of Graphene, Chem. Rev., 110 (2010) 132–145. doi: 10.1021/cr900070d
[22] M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range, Appl. Phys. Lett., 94 (2009) 31901.
[23] B. H. Ong, X. Yuan, and S. C. Tjin, Bimetallic silver-gold film waveguide surface plasmon resonance sensor, Integr. Opt. Devices, Mater. Technol. X, 6123 (2006) 61230B. doi: 10.1117/12.644028
[24] E. K. Akowuah, T. Gorman, and S. Haxha, Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration, Opt. Express., 17 (2009) 23511. doi: 10.1364/oe.17.023511
[25] S. Micloş, D. Savastru, A. Popescu, L. Başchir, and R. Savastru, Simulation of surface plasmon propagation in planar waveguides, UPB Sci. Bull. Ser. A Appl. Math. Phys., 78 (2016) 283–290.
[26] L. Ji, S. Yang, R. Shi, Y. Fu, J. Su, and C. Wu, Polymer Waveguide Coupled Surface Plasmon Refractive Index Sensor: A Theoretical Study, Photonic Sensors., 10 (2020) 353–363. doi: 10.1007/s13320-020-0589-y
[27] L. Kong, J. Lv, Q. Gu, Y. Ying, X. Jiang, and G. Si, Sensitivity-enhanced spr sensor based on Graphene and subwavelength silver gratings, Nanomaterials., 10 (2020) 1–12. doi: 10.3390/nano10112125
[28] H. K. Rouf and T. Haque, Sensitivity Enhancement of Graphene-MoSe2–Based SPR Sensor Using Ti Adhesion Layer for Detecting Biological Analytes, Plasmonics., 2 (2021) 28–35. doi: 10.1007/s11468-021-0144
[29] C. R. Lavers and J. S. Wilkinson, A waveguide-coupled surface-plasmon sensor for an aqueous environment, Sensors Actuators B. Chem., 22 (1994) 75–81. doi: 10.1016/0925-4005(94)01260-1
[30]  M. Riaz, S. K. Earles, A. Kadhim, and A. Azzahrani, Computer analysis of microcrystalline silicon hetero-junction solar cell with lumerical FDTD/DEVICE, Int. J. Comput. Mater. Sci. Eng.,  6 (2017) 12–22. doi: 10.1142/S2047684117500178