Document Type : Review Paper


1 chemical engineering department/ university of technology/ Baghdad/ Iraq

2 Chemical Engineering Dept., University of Technology-Iraq, Alsina’a street,10066 Baghdad, Iraq


Gas–liquid-solid fluidized beds are broadly utilized in the petrochemical, pharmaceutical, refining, food, biotechnology, and environmental industries. Due to complex phenomena, such as the particle-particle, liquid-particle, particle-bubble interactions, complex hydrodynamics, and heat transfer of three-phase (gas-liquid-solid) fluidized beds, they are incompletely understood. The ability to accurately predict the essential characteristics of the fluidized-bed system, such as hydrodynamics, individual phase mixing, and heat transfer parameters, is necessary for its successful design and operation. This paper investigates the pressure drop, minimum fluidization velocity, phase holdup, heat-transfer coefficient of a fluidized bed reactor, heat transfer studies, CFD simulation, and the effect of these parameters on the extent of fluidization. Many variables (fluid flow rate, particle density and size, fluid inlet, and bed height) affect the fluidizing quality and performance of the fluidization process. The hydrodynamics parameters, mixing of phases, and the behavior of heat transfer with various modes of fluidization were investigated to predict hydrodynamics parameters. Several publications have demonstrated the utility of (CFD) in explaining the hydrodynamics, heat, and mass transfer of fluidized beds. Principles of measurement, details of the experimental configurations, and the applied techniques by various researchers are also presented. Feng's model was statistically validated using experimental data that was both time-averaged and time-dependent. Furthermore, this model successfully predicted the instantaneous flow structures, which should provide strategies for the best design, scale-up, and operation in fluidized bed columns. The divergence between the simulated and observed values can be reduced by better understanding the fluidized bed's nature.

Graphical Abstract


  • The effect of several characteristics on hydrodynamic performance and heat transfer phenomena has been studied extensively.
  • A review of most of the previous correlations for various parameters in gas-liquid-solid fluidization systems was investigated.
  • CFD could be used to understand the complicated hydrodynamics of fluidization


Main Subjects

[1] C. Chen and L. Fan, Discrete simulation of gas-liquid bubble columns and gas-liquid-solid fluidized beds,‖
AIChE Journal 50, 2 (2004) 288–301,
[2] H.M. Jena, ―Hydrodynamics of gas-liquid-solid fluidized and semi-fluidized beds,‖ Ph.D. Thesis Submitt. to Natl.
Inst. Technol. Rourkela, (2009).
[3] J. M. Begovich and J. S. Watson., ―Hydrodynamic characteristics of three-phase fluidized beds.,‖ Cambridge
Univ. Press. Cambridge, 3 (1978) 190-195.
[4] T. J. Lin and C. Hung-Tzu, ―Effects of macroscopic hydrodynamics on heat transfer in a three-phase fluidized
bed,‖ Catal. Today, 79–80 (2003) 159–167, doi: 10.1016/S0920-5861(03)00021-X.
[5] Y. Shao, J. Gu, W. Zhong, and A. Yu, ―Determination of minimum fluidization velocity in a fluidized bed at
elevated pressures and temperatures using CFD simulations,‖ 350 (2019) 81–90, doi:
[6] M. A. Thombare, P. V Chavan, S. B. Bankar, and D. V Kalaga, ―Solid-liquid circulating fluidized bed : a way
forward,‖ Rev Chem Eng, 2017; (2017), doi: 10.1515/revce-2017-0017.
[7] K.Muroyama and L. Fan, ―Fundamentals of gas- liquid -solid fluidization,‖ AlChE Journal , 31, 1 (1985).
[8] A. Pare, ―Hydrodynamics of three phase fluidized bed using low density particles '' M.C.S. Thesis Submitt. to
Department of Chemical Engineering National Institute of Technology Rourkela, (2013).
[9] R. Cocco, S. B. Reddy,and K. T. Knowlton, ―Introduction to fluidization,‖, AIChE Journal, (2014) 21–29.
[10] E. Ramaswamy, C. Sirinivasakaan, and N. Balasubramaniam. ―Bed expansion characteristics of liquid-solid
fluidized bed with internals,‖ Modern Applied Science 2.2 (2008): 84-92. doi:10.5539/mas.v2n2p84.
[11] Y. H. Kim, A. Tsutsumi, and K. Yoshida, ―Effect of particle size on gas holdup in three-phase reactors,‖
Sadhana 10.1 (1987): 261-268.
[12] S. Mishra, ―Hydrodynamic Studies of Three-Phase Fluidized Bed by Experiment and CFD Analysis,‖ Ph.D.Thesis July, (2014).
[13] D. Sinha , R.Baliyan, A. Rana ,and R. Israni ,, ―Hydrodynamics of three phase fluidized bed using low density particles,‖ IJARIIE-ISSN(O)-2395-4396, 2 (2016) 236–244.
[14] S. Hembram, ―Behaviour of Three Phase Fluidized Bed with Regular Particles,‖ PhD thesis, 108 (2013).
[15] R. K. Padhi., ―Prediction of bed pressure drop , fluctuation and expansion ratios for three-phase fluidization of ternary mixtures of dolomite in a conical conduit‖ Cogent Eng., 23 (2016) doi: 10.1080/23311916.2016.1181821.
[16] G. Sun, and J. R. Grace, ―Effect of Particle Size Distribution in Different Fluidization Regimes,‖ AIChE journal 38 (1992) 716-722.
[17] R. Sukarsono, S. Riyadi, and D. H. S. Rinanti, ―The selection of geometry and flow rate on the fluidized bed reactor for coating particle,‖ IOP Conf. Series: Journal of Physics: Conf. Series 1198 (2019) doi: 10.1088/1742-6596/1198/2/022079.
[18] K. Sivaguru, K. M. M. S. Begum, and N. Anantharaman, ―Hydrodynamic studies on three-phase fluidized bed using CFD analysis,‖ 155 (2009) 207–214. doi: 10.1016/j.cej.2009.07.037.
[19] N. Love and A. Choudhuri, ―Effect of bed height, bed diameter and particle shape on minimum fluidization in a gas-solid fluidized bed,‖ Conference Paper, (2012).doi: 10.2514/6.2012-644.
[20] P. Sahoo and A. Sahoo, ―Fluidization and spouting of fine particles : A comparison,‖ Advances in Materials Science and Engineering, (2013), Article ID 369380, 7 pages, 2013,
[21] P. Lettieri and D. Macrì, ―Effect of process conditions on fluidization,‖ KONA Powder and Particle Journal, review paper, pp., (2015) 1–24. doi: 10.14356/kona.2016017.
[22] H. Bodhanwalla, M. Ramachandran, and S. S. Nmims, ―Parameters affecting the fluidized bed performance : A review‖ REST Journal on Emerging trends in Modelling and Manufacturing., 3 (2017).
[23] M. Down more and S. D. Jambgwa, ―Effect of bed particle size and temperature variation on the minimum fluidization velocity : A comparison with minimum fluidization velocity correlations for bubbling fluidized bed designs,‖ 0 (2019) 1–12. doi: 10.1177/0954408918821769.
[24] F. Karachi, L. Belfares, I. Iliuta, and B. P. A. Grandjean, ―Three-phase fluidization macroscopic hydrodynamics revisited,‖ Ind. Eng. Chem. Res., 40 (2001) 993–1008. doi: 10.1021/ie0006864.
[25] D. Lee, A. Macchi, N. Epstein, and J. R. Grace, ―Transition Velocities and Phase Holdups at Minimum Fluidization in Gas-Liquid-Solid Systems,‖ The Canadian Journal of Chemical Engineering 79 (2001):
[26] L. A. Briens and N. Ellis, ―Hydrodynamics of three-phase fluidized bed systems examined by statistical, fractal, chaos and wavelet analysis methods,‖ Chem. Eng. Sci., 60 (2005) 6094–6106.doi: 10.1016/j.ces.2005.04.005.
[27] P. Dargar and A. Macchi, ―Effect of surface-active agents on the phase holdups of three-phase fluidized beds,‖ 45 (2006) 764–772. doi: 10.1016/j.cep.2006.03.004.
[28] C. Cao, M. Liu, and Q. Guo, ―Experimental investigation into the radial distribution of local phase holdups in a gas - liquid - solid fluidized bed,‖ Industrial & engineering chemistry research 46.11 (2007)
[29] H. M. Jena, B. K. Sahoo, G. K. Roy, and B. C. Meikap, ―Characterization of hydrodynamic properties of a gas-liquid-solid three-phase fluidized bed with regular shape spherical glass bead particles,‖ 145 (2008) 50–56.DOI: 10.1016/j.cej.2008.03.002.
[30] D. Zhou, S. Dong, H. Wang, and H. T. Bi, ―Minimum fluidization velocity of a three-phase conical fluidized bed in comparison to a cylindrical fluidized bed,‖ Ind. Eng. Chem. Res., 48 (2009) 27–36. doi: 10.1021/ie8001974.
[31] A. Sivalingam and T. Kannadasan, ―Effect of fluid flow rates on hydrodynamic characteristics of co-current three-phase fluidized beds with spherical glass bead particles,‖ Int. J. ChemTech Res., 1 (2009) 851–855.
[32] Y. Li, M.Liu, and L. Yanjun, ―Minimum Fluidization Velocity in Gas-Liquid-Solid Minifluidized Beds,‖ AIChE J., 62, 4 (2016) 1940–1957,
[33] P. Rohini Kumar, K. V Ramesh, and P. Venkateswarlu, ―Phase Holdups in A Three-Phase Fluidized Bed in the Presence of Coaxially Placed String of Spheres Internal,‖ IOP Conf. Ser. Mater. Sci. Eng., 225 (2017). doi: 10.1088/1757-899x/225/1/012210.
[34] A. Sivalingam and T. Kannadasan, ―Effect of fluid flow rates on hydrodynamic characteristics of co-current three phase fluidized beds with spherical glass bead particles,‖ Int. J. ChemTech Res., 1 (2009) 851–855.
[35] A. Knesebeck and R. Guardani, ―Particle distribution in a three-phase fluidized bed under low-to-intermediate Reynolds conditions,‖, 140 (2004) 30–39. doi: 10.1016/j.powtec.2003.12.013.
[36] W. Feng, J. Wen, J. Fan, Q. Yuan, X. Jia, and Y. Sun, ―Local hydrodynamics of gas – liquid-nanoparticles three-phase fluidization,‖ 60 (2005) 6887–6898, doi: 10.1016/j.ces.2005.06.006.
[37] V. G. Aditya, P. Panda, S. C. Rana, and H. M. Jena, ―Experimental Study of the Behaviour of a Three-phase Fluidized Bed with Cylindrical Particles,‖ , (2006).
[38] A. H. Sulaymon, T. J. Mohammed, and A. H. Jawad, ―Hydrodynamic Characteristics of Three-Phase Non- Newtonian Liquid-Gas -Solid Fluidized Beds,‖ Emirates J. Eng. Res., 15, 1 (2010) 41–49.
[39] S. Venkatachalam, K. Kandasamy, and S. Kandasamy, ―Correlation for prediction of minimum fluidization velocity and riser liquid holdup in three-phase external loop airlift fluidized bed reactor,‖ Int. J. Chem. React. Eng., 8 (2010), doi: 10.2202/1542-6580.2337.
[40] T. J. Mohammed, A. H. Sulaymon, and A. A. Abdul-Rahmun, ―Hydrodynamic Characteristic of Three-Phase (Liquid-Liquid-Solid) Fluidized Beds,‖ J. Chem. Eng. Process Technol., 5, 2 (2014), doi: 10.4172/2157-7048.1000188.
[41] T. Nan, ―Hydrodynamics of Liquid-Solid and Three-Phase Inverse Circulating Fluidized Beds,‖ Electron.Ph.D Thesis Diss. Repos. ,Western Univ., (2019).
[42] C. Calvachi, G. Lucía, and I. Ortiz, ―Recirculating aquaculture system with three phase fluidized bed reactor : Carbon and Sistema de recirculación acuícola con reactor de lecho fluidizado trifásico : Remoción de,‖ Revista Facultad de Ingeniería Universidad de Antioquia 97 (2020): 93-102, doi: 10.17533/udea.redin.20200264..
[43] A. I. Alwared and W. Sh, ―Spiral path three phase fluidized bed reactor for treating wastewater contaminated with engine oil,‖ Appl. Water Sci., 10, 9 (2020) 1–11, doi: 10.1007/s13201-020-01290-4.
[44] F. Larachi, I. Iliuta, O. Rival, and B. P. A. Grandjean, ―Prediction of minimum fluidization velocity in three-phase fluidized-bed reactors,‖ Ind. Eng. Chem. Res., 39, 2 (2000) 563–572, doi: 10.1021/ie990435z.
[45] S. Sahoo, ―Fluidized bed reactor: design and application for abatement of fluoride '' Bachelor of Technology ( Chemical Engineering ) (2012).
[46] S. Ergun, , ―Fluid Flow through Packed Columns, ‖ Chem. Eng. Progress, 48,2 (1952) 89–94.
[47] R. K. Niven, ―Physical insight into the Ergun and Wen and Yu equations for fluid flow in packed and fluidised beds,‖ Chem. Eng. Sci., 57, 3 (2002) 527–534, doi: 10.1016/S0009-2509(01)00371-2.
[48] Fortin Y, ―Reacteurs a lit fluidise triphasique: caracteristiques hydrodynamiques et melange des particules solides,‖ PhD thesis, Inst. Natl. Polytech. Lorraine, Lorraine, Fr. (1984).
[49] Enrique Costa, ―Fluid Dynamics of Gas-Liquid-Solid Fluidized Beds,‖ Am. Chem. Soc., 25 (1986) 849–854,
[50] G.H.Song, F. Bavarian, L.S.Fan, ―Hydrodynamics of three-phase fluidized bed containing cylindricalhydrotreating catalysts.,‖ Can. J. Chem. Eng., 67,2 (1989) 265–275,
[51] S. Nacef, ―Hydrodynamique des lits fluidises gaz–liquide–solide, ‖ Ph.D. Dissertation, L’Institut National Polytechnique de Lorraine, (1991).
[52] J.P.Zhang, N. Epstein, and J.R.Grace, ― Minimum fluidization velocityes for gas-liquid-solid three-phase system. ‖ Powder technology 100.2-3 (1998): 113-118,
[53] K. Ramesh and T. Murugesan, ―Minimum fluidization velocity and gas holdup in gas – liquid – solid fluidized bed reactors,‖ 136 (2002) 129–136, doi: 10.1002/jctb.533.
[54] R.S.Ruiz, F.Alonso, and J. Ancheyta, ―Minimum fluidization velocity and bed expansion characteristics of hydrotreating catalysts in ebullated-bed systems. ‖ Energy & fuels 18.4 (2004),1149-1155,
[55] S. B. and C. L. Briens, ―Fluidization regimes in two- and three-phase fluidized beds: comparison between measurement techniques,‖ Can. J. Chem. Eng., 79 (2001) 430–437, doi:10.1002/cjce.5450790316.
[56] H. A. Khawaja, ―Review of the phenomenon of fluidization and its numerical modelling techniques,‖ , 9, 4, (2015) 397–408. doi:10.1260/1750-9548.9.4.397.
[57] G.B.Wallis, ―One-dimensional two-phase flow.‖ McGraw-Hill, New York, (1969).
[58] H.Li, ―Heat transfer and hydrodyaamics in a three-phase slurry bubble column,‖ Ph.D.Thesis of Philosophy, (1998).
[59] J. Schweitzer, J. Bayle, and T. Gauthier, ―Local gas hold-up measurements in fluidized bed and slurry bubble column,‖, Chemical Engineering Science 56.3 (2001): 1103-1110, doi:10.1016/S0009-2509(00)00327-4.
[60] F. Tao, S. Ning, B. Zhang, H. Jin and G. He, ―Simulation Study on Gas Holdup of Large and Small Bubbles in a High Pressure Gas–Liquid Bubble Column,‖ MDPI Process., 7 (2019) 594, doi:10.3390/pr7090594
[61] S. Sharaf, M. Zednikova, M. C. Ruzicka, and B. J. Azzopardi, ―Global and local hydrodynamics of bubble columns – Effect of gas distributor,‖ Chem. Eng. J., 288 (2016) 489–504, doi: 10.1016/j.cej.2015.11.106.
[62] A. A. Mouza, G. K. Dalakoglou, and S. V Paras, ―Effect of liquid properties on the performance of bubble column reactors with fine pore spargers,‖, 60 (2005) 1465–1475, doi: 10.1016/j.ces.2004.10.013.
[63] V.K.Bhatia, and N. Epstein, ‗―Three-phase fluidization: A generalized wake model,‖ Proc. Int. Conf. on Fluidizatton and Its Applications, Cepudues Editions, Toulouse, 380 (1974).
[64] K.Ostergaard, ―Holdup, mass transfer, and mixing in three-phase fluidization,‖ AIChE Symposium Series, 74(176) (1978) 82–86.
[65] H.Yu, and B. E. Rittman, ―Predicting bed expansion and phase hold-up for three-phase fluidized bed reactors with and without biofilm,” Water Res. 31(10) (1997) 2604–2616,
[66] H. M. Jena, G. K. Roy, and B. C. Meikap, ―Gas holdup in a three -phase fluidized bed with cylindrical particles,‖ Natl. Conf. Front. Chem. Eng. (2007).
[67] A. Catros, and J. R. Bernard ―Gas holdup above the bed surface and grid gas jet hydrodynamics for three phase fluidized beds,‖, 63,5 (1985), 754-759,
[68] L.S.Fan, F.R. Bavarian, I.Gorowara, and B.E. Kreischer, ―Hydrodynamics of gas-liquid-solid fluidization under high gas hold-up conditions‖. Powder technology 53.3 (1987): 285-293,
[69] R.L.Gorowara,and L.S. Fan, ―Effect of surfactants on three-phase fluidized bed hydrodynamics.,‖ Industrial & engineering chemistry research 29.5 (1990): 882-891,
[70] Z.Chen, C.Zheng, and Y.Feng, ―Distributions of flow regimes and phase holdups in three-phase fluidised
[71] M.Safoniuk,J.R. Grace, L.Hackman, and C.A Mcknight, ―Gas hold-up in a three-phase fluidized bed.,‖ AIChE J., 48,7 (2002), 1581 - 1587, doi:10.1002/aic.690480720.
[72] G. V. Vinod, A.V., Ajeesh,and K.N., Reddy, ―Studies on gas hold-up in a Draft tube fluidised bed column.,‖ Indian Chem. Eng., 46 (2004) 229–23,
[73] A. Bakopoulos, , ―Multi-phase fluidization in large-scale slurry jet loop bubble columns for methanol and or dimethyl ether production.,‖Chemical engineering science 61.2 (2006): 538-557,
[74] S. Nacef, S.Poncinb, A. Bouguettouchaa, and G. Wild, ―Drift flux concept in two- and three-phase reactors.,‖ Chemical engineering science, 62.24 (2007): 7530-7538,
[75] S.M Son, S.H Kang, T.G. Kang, P.S.Song, U.Y. Kim, Y. Kang, and H.K.Kang, ―Gas holdup and gas-liquid mass transfer in three-phase circulating fluidized-bed bioreactors. ‖ J. Ind. Eng. Chem., 13,1 (2007) 14-20.
[76] M. H. Abdel-aziz, M. Z. El-Abd, and M. Bassyouni, ―Heat and mass transfer in three-phase fluidized bed containing high-density particles at high gas velocities,‖ Int. J. Therm. Sci., 102 (2016) 145–153.doi: 10.1016/j.ijthermalsci.2015.11.020.
[77] E. N. Chiu, T.M. and Ziegler, ―Heat transfer in three‐phase fluidized beds.,‖ AIChE journal., 29 (1983) 677-685.
[78] S. Kato, Y., Uchida, K., Kago, T. and Morooka, ―Liquid holdup and heat transfer coefficient between bed and wall in liquid-solid and gas-liquid-solid fluidized beds,‖ Powder Technol., 28 (1981) 173–
[79] K. Muroyama, M. Fukuma and Yasunishi, ―Wall-to-bed heat transfer in liquid-solid and gas-liquid-solid fluidized beds‖, Part-II : Caned.J.Chem. Eng., 64 (1986),
[80] O. Nore, G. Wild, C. L. Briens, and A. Margaritis, ― Wall-to-bed heat transfer in three- phase fluidized beds of low density particles‖, Can J. of Chem. Eng., 72 (1994) 546-550.
[81] A. Zorana, and G. Radmila, ―Wall-to-bed heat transfer in vertical hydraulic transport and in particulate fluidized beds‖ International Journal of Heat and Mass Transfer, 51 (2008)
[82] B. Baker, and C.G.J., Armstrong, ―Heat transfer in three-phase fluidized beds‖,Powder Technol., 21 (1978) 195-204.
[83] A.R. Khan and J.F. Richardson, ―Heat transfer from plane surface to liquids and to liquid-solid fluidized beds‖, Chemical Engineering Journal., 38 (1983) 2053-2066.
[84] M. Magiliotou, Y.M. Chem, and L.S. Fan, ―Bed-immersed object heat transfer in a three- phase fluidized bed‖, AIChE. J., 34 (1988)
[85] X. Luo, P. Jiang, and L. Fan, ―High-pressure three-phase fluidization : hydrodynamics and heat transfer,‖ AIChE J., 43 (1997) 2432–2445.
[86] K. Muroyama S. Okumichi Y. Goto Y. Yamamoto and S. Saito, ―Heat transfer from immersed vertical cylinders in gas-liquid and gas-liquid- solid fluidized beds‖, Chemical Engineering and Technology, 24 (2001);2-9.
[87] J.R. Grace, and A. Stefanova, "Heat transfer from immersed vertical tube in a fluidized bed of group A particles near the transition to the turbulent fluidization flow regime" International Journal of Heat and Mass Transfer., 51 (2008),2020-2028. doi:10.1016/j.ijheatmasstransfer.2007.06.005
[88] M. I. Abdul-wahab and S. A. Mohammed, ―Prediction of effective bed thermal conductivity and heat transfer coefficient in fluidized beds,‖ IJCPE Journal. ,10 (2009) 1–8.
[89] Y. Kang, I.S. Suh, and S.D. Kim, ―Heat transfer characteristics of three phase fluidized beds.,‖ ChemicalEngineering Communications 34.1-6 (1985): 1-13.doi:10.1080/00986448508911182.
[90] S. D. Kim, Y. Kang, and H. K. Kwon, ―Heat transfer characteristics in two- and three-phase slurry-fluidized beds,‖, 32 (1986) 6–9.
[91] S. Kumar, and L.S.Iian, ―Heat transfer characteristics in viscous gas liquid and gas. liquid solid systems.,‖ AIChE J., 40 (1994).
[92] E. N. Chiu, and T.M. Ziegler, ―Liquid holdup and heat transfer coefficient in liquid-solid and three-phase fluidized beds,‖ AIChE J., 9 (1985) 1504–1509.
[93] Y. Hatate, S.Tajari, T. Fujita, T. Fukumoto, I. Hano, ―Heat transfer coefficient in three-phase vertical upflows of gas-liquid -fine solid particle particles system.,‖ Journal of chemical engineering of Japan 20.6 (1987): 568-574,
[94] S. D. Kang. and Y. Kim, ―On the heat transfer mechanism in three phase fluidized beds.,‖ Korean .I. Chem. Engng, 5 (1988) 154-163. doi:10.1007/BF02697670.
[95] S. D. Kim, Y. J. Lee,and J. O. Kim, ―Heat transfer and hydrodynamic studies on two- and three-phase fluidized beds of floating bubble breakers,‖ Experimental Thermal and Fluid Science , (1988) 237–
[96] S. I. Kim. J. O., Park,. and D. H Kim, ―Heat transfer and wake characteristics in three-phase fluidized beds with floating bubble breakers‖, Chemical Engineering and Processing: Process Intensification 28.2 (1990):
[97] Y. J. Cho, S. Jung, S. Hee, Y. Kang, and S. Done, ―Heat transfer and bubble properties in three-phase circulating fuidized beds,‖ Chemical engineering science 56.21-22 (2001): 6107-6115,
[98] K. S. K. R. A. O. Patnaik, ―Heat transfer mechanisms in a gas - liquid-solid fluidized beds,‖ Proceedings of the World Congress on Engineering and Computer Science (WCECS 2007). 24-26,2007.
[99] Z. Arsenijević, T. K. Radoičić, M. Đuriš, and Ž. Grbavčić, ―Experimental investigation of heat transfer in three- phase fluidized bed cooling column,‖ Chem. Ind. Chem. Eng. Q., 21, 4, (2015) 519–526, doi: 10.2298/CICEQ141022008A.
[100] D. Ho, J. Hwa, H. Ryong, Y. Kang, H. Jung, and S. Done, ―Heat transfer in three-phase ( G / L / S ) circulating fluidized beds with low surface tension media,‖ Chem. Eng. Sci., 66, 14 (2011) 3145–3151, doi: 10.1016/j.ces.2011.02.061.
[101] W.D. Deckwer, ―On the Mechanism of Heat Transfer in Bubble Column Reactors, ‖ Chem. Eng. ScL, 35 (1980) 1341-1346,
[102] A. Zaidi, B. Benchekchou, M. Karioun, and A. Akharaz, ―Heat transfer in three-phase fluidized beds with Non-Newtonian pseudoplastic solutions,‖ Chem. Eng., 93 (1990) 135–146,doi: 10.1080/00986449008911442.
[103] Y. C. Moharana, and M. K. Malik, ―Fluidization in conical bed and computational fluid dynamics ( CFD ) modeling of the bed,‖ A Project submitted to theNational Institute of Technology, Rourkela no., 108 (2008).
[104] G. Q. Cao, M.Y. Liu, and J.P. Wen, ―Experimental measurement and numerical simulation for liquid flow velocity and local phase hold-ups in the riser of a GLSCFB,‖ Chemical Engineering and Processing: Process Intensification., 48(2009) 288-295.
[105] S. S. R. Panneerselvam and G. D. Surender, ―CFD simulation of hydrodynamics of gas–liquid–solid fluidised bed reactor,‖ Chemical Engineering Science., 64 (2009)
[106] M. Hamidipour and J. Chen, ―CFD study on hydrodynamics in three-phase fluidized beds — Application of turbulence models and experimental validation ,‖ , 78 (2012) 167–180. doi: 10.1016/j.ces.2012.05.016.
[107] W. Li and W. Zhong, ―CFD simulation of hydrodynamics of gas-liquid-solid three-phase bubble column,‖ Powder Technol., Powder Technology., 286 (2015) 766-788. doi: 10.1016/j.powtec.2015.09.028.
[108] S.N. Saha,G.P. Dewangan, and R. Gadhewal ―Gas-Liquid-Solid Fluidized Bed Simulation by ComputationalFluid Dynamics,‖ Int. J. Adv. Res. Chem. Sci., 3 (2016) 1–8.
[109] Y. Liu, ―Numerical Simulation of Three-Phase Flows in the Inverse Fluidized bed,‖ Scholarship @ Western, (2018).
[110] P. Khongprom, W.Wanchan; K. Kamkham;and S. Limtrakul ―CFD Simulation of the Hydrodynamics in Three Phase Fluidized Bed Reactor: Effect of Particle Properties,‖ IEEE, (2020) di10.1109/RI2C48728.2019.8999951.
[111] D. Z . Zhang, and W. B.Vanderheyden, ― The effects of mesoscale structures on the disperse two-phase flows and their closures for dilute suspensions‖ . Int. J. Multiphase Flows, 28(5), (2002) 805– 9322(02)00005-8,20.