Document Type : Research Paper

Authors

1 Department of Materials Engineering, University of Technology, Iraq

2 Department of Materials Engineering, University of Technology-Iraq, Alsinaa Street 52, 10066, Baghdad, Iraq

3 Institute on Membrane Technology National Research Council of Italy (CNR-ITM)

4 Institute on Membrane Technology, National Research Council (ITM-CNR), 87030 Rende, CS, Italy

5 Chemical Engineering and Materials Department, University of Calabria, Cosenza, Italy

6 University of Technology-Iraq, Alsinaa street, 52

Abstract

One of the polymeric membranes' main limitations is their susceptibility to fouling, lowering the membrane's performance with time. Therefore, incorporating nanomaterials in polymer matrices has attracted great attention in wastewater treatment applications. It's a promising approach for enhancing membrane hydrophilicity and performance.  Herein, ultrafiltration nanocomposite membranes were synthesized by applying the phase inversion method through immobilizing (0.1-0.4 wt.%) tungsten oxide (WO2.89) nanoparticles in a polyether sulfone (PES) matrix. Membrane's anti-fouling performance was evaluated against tinzaparin sodium. The data showed that the pure water flux improved with increasing nanoparticle loading, reaching its optimum value of 54.9 kg/m2 h at 0.4 wt.% WO2.89 nanoparticles compared to the neat membrane's 30.42 kg/m2 h. The results also demonstrated that the rejection efficiency and flux recovery ratio (FRR) against tinzaparin sodium was enhanced, by 44.89% and 12.69%, respectively, for the membranes modified with 0.4wt.% WO2.89 nanoparticles loading compared to the neat PES membrane. The data also showed that after exposing the nanocomposite membranes to UV light irradiation (λ=365 nm) and intensity (1200mW/cm2) for 1h, a further enhancement by 8.34% in FRR as compared to the membranes with the same percentage of nanoparticles loading without irradiation. It is concluded that the photocatalytic activity of WO2.89 nanoparticles in the decomposition of organic molecules on/close to the membrane surface was the impact that caused this improvement in membrane anti-fouling property

Graphical Abstract

Highlights

  • Preparation of tungsten oxide (WO2.89) NPs immobilized PES matrix.
  • Antifouling performance was evaluated against tinzaparin sodium.
  • Further enhancement was noticed after exposing the membranes to UV irradiation.

Keywords

Main Subjects

[1] N. Li et al., “Precisely-controlled modification of PVDF membranes with 3D TiO2/ZnO nanolayer: enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation,” J. Membr. Sci., 528 (2017) 359–368. doi: https://doi.org/10.1016/j.memsci.2017.01.048.
[2] H. Bai, X. Zan, L. Zhang, and D. D. Sun, “Multi-functional CNT/ZnO/TiO2 nanocomposite membrane for concurrent filtration and photocatalytic degradation,” Sep. Purif. Technol., 156 (2015) 922–930. doi: https://doi.org/10.1016/j.seppur.2015.10.016.
[3] S. Yang, Q. Zou, T. Wang, and L. Zhang, “Effects of GO and MOF@GO on the permeation and antifouling properties of cellulose acetate ultrafiltration membrane,” J. Membr. Sci., 569, (2019), 48–59, doi: https://doi.org/10.1016/j.memsci.2018.09.068.
[4] R. J. Kadhim, F. H. Al-Ani, and Q. F. Alsalhy, “MCM-41 mesoporous modified polyethersulfone nanofiltration membranes and their prospects for dyes removal,” Int. J. Environ. Anal. Chem., (2021) 1–21.  doi: 10.1080/03067319.2020.1865326.
[5] M. Al-Furaiji, K. Kalash, M. Kadhom, and Q. Alsalhy, “Evaluation of polyethersulfone microfiltration membranes embedded with MCM-41 and SBA-15 particles for turbidity removal,” Desalin. Water Treat., 215 (2021) 50–59. doi: 10.5004/dwt.2021.26764.
[6] C. Ferreiro et al., “Contaminants of Emerging Concern Removal in an Effluent of Wastewater Treatment Plant under Biological and Continuous Mode Ultrafiltration Treatment,” Sustainability , 12 (2020) 725. doi: 10.3390/su12020725.
[7] E. Dadvar, R. R. Kalantary, H. Ahmad Panahi, and M. Peyravi, “Efficiency of Polymeric Membrane Graphene Oxide-TiO2 for Removal of Azo Dye,” J. Chem., (2017) 6217987. doi: 10.1155/2017/6217987.
[8] R. Zhang et al., “A novel photocatalytic membrane decorated with PDA/RGO/Ag3PO4 for catalytic dye decomposition,” Colloids Surfaces A Physicochem. Eng. Asp., 563 (2019) 68–76. doi: https://doi.org/10.1016/j.colsurfa.2018.11.069.
[9] X. Li et al., “Self-assembly of TiO2 nanoparticles around the pores of PES ultrafiltration membrane for mitigating organic fouling,” J. Membr. Sci., 467 (2014) 226–235. doi: https://doi.org/10.1016/j.memsci.2014.05.036.
[10] N. Haghighat, V. Vatanpour, M. Sheydaei, and Z. Nikjavan, “Preparation of a novel polyvinyl chloride (PVC) ultrafiltration membrane modified with Ag/TiO2 nanoparticle with enhanced hydrophilicity and antibacterial activities,” Sep. Purif. Technol., 237, (2020), 116374, doi: https://doi.org/10.1016/j.seppur.2019.116374.
[11] Y. Wen, J. Yuan, X. Ma, S. Wang, and Y. Liu, “Polymeric nanocomposite membranes for water treatment: a review,” Environ. Chem. Lett., 17, (2019), 1539–1551, doi: 10.1007/s10311-019-00895-9.
[12] J. Guo, S. Khan, S. H. Cho, and J. Kim, “ZnS nanoparticles as new additive for polyethersulfone membrane in humic acid filtration,” J. Ind. Eng. Chem., 79 (2019). doi: 10.1016/j.jiec.2019.05.015.
[13] K. Rashid, Q. Alsalhy, A. Figoli, R. Raheem, and F. Al-Ani, “Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater,” Membranes (Basel)., 10 (2020) 77.
[14] Q. F. Alsalhy, F. H. Al-Ani, A. E. Al-Najar, and S. I. A. Jabuk, “A study of the effect of embedding ZnO-NPs on PVC membrane performance use in actual hospital wastewater treatment by membrane bioreactor,” Chem. Eng. Process. - Process Intensif., 130 (2018) 262-274. doi: 10.1016/j.cep.2018.06.019.
[15] S. Balta, A. Sotto, P. Luis, L. Benea, B. Van der Bruggen, and J. Kim, “A new outlook on membrane enhancement with nanoparticles: The alternative of ZnO,” J. Membr. Sci., 389 (2012) 155–161. doi: https://doi.org/10.1016/j.memsci.2011.10.025.
[16] R. J. Kadhim, F. H. Al-Ani, M. Al-shaeli, Q. F. Alsalhy, and A. Figoli, “Removal of Dyes Using Graphene Oxide (GO) Mixed Matrix Membranes,” Membranes ,  10 (2020). doi: 10.3390/membranes10120366.
[17] D. Al-Araji, F. Al-Ani, and Q. Alsalhy, “Modification of polyethersulfone membranes by Polyethyleneimine (PEI) grafted Silica nanoparticles and their application for textile wastewater treatment,” Environ. Technol., (2022) 1–17. doi: 10.1080/09593330.2022.2049890.
[18] A. J. Sadiq et al., “Comparative study of embedded functionalised MWCNTs and GO in Ultrafiltration (UF) PVC membrane: interaction mechanisms and performance,” Int. J. Environ. Anal. Chem., (2020) 1–22. doi: 10.1080/03067319.2020.1858073.
[19] C. Ursino, R. Castro-Muñoz, E. Drioli, L. Gzara, M. H. Albeirutty, and A. Figoli, “Progress of Nanocomposite Membranes for Water Treatment,” Membranes (Basel)., 8 (2018) 18. doi: 10.3390/membranes8020018.
[20] E. Demirel, B. Zhang, M. Papakyriakou, S. Xia, and Y. Chen, “Fe2O3 nanocomposite PVC membrane with enhanced properties and separation performance,” J. Membr. Sci., 529 (2017) 170-184. doi: 10.1016/j.memsci.2017.01.051.
[21] E. S. Awad, T. M. Sabirova, N. A. Tretyakova, Q. F. Alsalhy, A. Figoli, and I. K. Salih, “A Mini-Review of Enhancing Ultrafiltration Membranes (UF) for Wastewater Treatment: Performance and Stability,” ChemEngineering , 5 (2021). doi: 10.3390/chemengineering5030034.
[22] M. A. Mohamed et al., “Physicochemical characteristic of regenerated cellulose/N-doped TiO2 nanocomposite membrane fabricated from recycled newspaper with photocatalytic activity under UV and visible light irradiation,” Chem. Eng. J., 284 (2016)  202–215. doi: https://doi.org/10.1016/j.cej.2015.08.128.
[23] P. Argurio, E. Fontananova, R. Molinari, and E. Drioli, “Photocatalytic Membranes in Photocatalytic Membrane Reactors,” Processes , 6 (2018) 162. doi: 10.3390/pr6090162.
[24] N. Li et al., “Self-cleaning PDA/ZIF-67@PP membrane for dye wastewater remediation with peroxymonosulfate and visible light activation,” J. Membr. Sci., 591 (2019) 117341. doi: https://doi.org/10.1016/j.memsci.2019.117341.
[25] C. P. Athanasekou et al., “Prototype composite membranes of partially reduced graphene oxide/TiO2 for photocatalytic ultrafiltration water treatment under visible light,” Appl. Catal. B Environ., 158–159 (2014) 361–372. doi: https://doi.org/10.1016/j.apcatb.2014.04.012.
[26] X. Zheng, Z.-P. Shen, L. Shi, R. Cheng, and D.-H. Yuan, “Photocatalytic Membrane Reactors (PMRs) in Water Treatment: Configurations and Influencing Factors,” Catalysts , 7 (2017) 224. doi: 10.3390/catal7080224.
[27] A. Rajeswari, A. Rajeswari, S. Vismaiya, S. Vismaiya, A. Pius, and A. Pius, “Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water,” Chem. Eng. J., 313 (2017)  928–937. doi: 10.1016/j.cej.2016.10.124.
[28] S. F. Zakeritabar, M. Jahanshahi, M. Peyravi, and J. Akhtari, “Photocatalytic study of nanocomposite membrane modified by CeF3 catalyst for pharmaceutical wastewater treatment,” J. Environ. Heal. Sci. Eng., 18 (2020) 1151–1161.
[29] Y. Ishida, S. Motono, W. Doshin, T. Tokunaga, H. Tsukamoto, and T. Yonezawa, “Small Nanosized Oxygen-Deficient Tungsten Oxide Particles: Mechanistic Investigation with Controlled Plasma Generation in Water for Their Preparation,” ACS Omega, 2 (2017) 5104–5110, doi: 10.1021/acsomega.7b00986.
[30] J. Meng, Q. Lin, T. Chen, X. Wei, J. Li, and Z. Zhang, “Oxygen vacancy regulation on tungsten oxides with specific exposed facets for enhanced visible-light-driven photocatalytic oxidation,” Nanoscale, 10 (2018) 2908-2915. doi: 10.1039/c7nr08590g.
[31] B. Ma, E. Huang, G. Wu, W. Dai, N. Guan, and L. Li, “Fabrication of WO2.72/RGO nano-composites for enhanced photocatalysis,” RSC Adv., 7 (2017) 2606-2614, doi: 10.1039/c6ra26416f.
[32] D. P. Depuccio, P. Botella, B. O’Rourke, and C. C. Landry, “Degradation of methylene blue using porous WO3, SiO2-WO3, and their Au-loaded analogs: Adsorption and photocatalytic studies,” ACS Appl. Mater. Interfaces, 7 (2015) 1987-1996, doi: 10.1021/am507806a.
[33] M. J. Islam, D. A. Reddy, J. Choi, and T. K. Kim, “Surface oxygen vacancy assisted electron transfer and shuttling for enhanced photocatalytic activity of a Z-scheme CeO2-AgI nanocomposite,” RSC Adv., 6 (2016) 19341-19350. doi: 10.1039/c5ra27533d.
[34] M. Weil and W. D. Schubert, “The beautiful colours of tungsten oxides,” ITIA Newsletter, no. June. 2013.
[35] Z. A. Mohd Hir, A. H. Abdullah, Z. Zainal, and H. N. Lim, “Photoactive Hybrid Film Photocatalyst of Polyethersulfone-ZnO for the Degradation of Methyl Orange Dye: Kinetic Study and Operational Parameters,” Catalysts, 7 (2017) 313. doi: 10.3390/catal7110313.
[36] G. Frascaroli et al., “Pharmaceuticals in Wastewater Treatment Plants: A Systematic Review on the Substances of Greatest Concern Responsible for the Development of Antimicrobial Resistance,” Applied Sciences , 11 (2021) 6670. doi: 10.3390/app11156670.
[37] Y. Guo, P. S. Qi, and Y. Z. Liu, “A Review on Advanced Treatment of Pharmaceutical Wastewater,” IOP Conf. Ser. Earth Environ. Sci., 63 (2017) 12025. doi: 10.1088/1755-1315/63/1/012025.
[38] C. Gadipelly et al., “Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse,” Ind. Eng. Chem. Res., 53 (2014) 11571–11592, doi: 10.1021/ie501210j.
[39] P. Rabia Tahir, “A Review of Unfractionated Heparin and Its Monitoring,” July 13, College of Pharmacy and Allied Health Sciences, St. John’s University, Jamaica, New York, 2007.
[40] K. B. Johansen and T. Balchen, “Tinzaparin and other low-molecular-weight heparins: what is the evidence for  differential dependence on renal clearance?,” Exp. Hematol. Oncol., 2 (2013)  21. doi: 10.1186/2162-3619-2-21.
[41] R. R. Abdullah, K. M. Shabeed, A. B. Alzubaydi, and Q. F. Alsalhy, “Novel photocatalytic polyether sulphone ultrafiltration (UF) membrane reinforced with oxygen-deficient Tungsten Oxide (WO2.89) for Congo red dye removal,” Chem. Eng. Res. Des., 177 (2022) 526–540. doi: https://doi.org/10.1016/j.cherd.2021.11.015.
[42] S. Wang, W. Fan, Z. Liu, A. Yu, and X. Jiang, “Advances on tungsten oxide based photochromic materials: Strategies to improve their photochromic properties,” Journal of Materials Chemistry C, 6 (2018) 191-212. doi: 10.1039/c7tc04189f.
[43] Z. X. Low et al., “Enhancement of the Antifouling Properties and Filtration Performance of Poly(ethersulfone) Ultrafiltration Membranes by Incorporation of Nanoporous Titania Nanoparticles,” Ind. Eng. Chem. Res., 54 (2015) 11188-11198. doi: 10.1021/acs.iecr.5b03147.
[44] L. A. Shah, T. Malik, M. Siddiq, A. Haleem, M. Sayed, and A. Naeem, “TiO2 nanotubes doped poly(vinylidene fluoride) polymer membranes (PVDF/TNT) for efficient photocatalytic degradation of brilliant green dye,” J. Environ. Chem. Eng., 7 (2019) 103291. doi: 10.1016/j.jece.2019.103291.
[45] A. L. Ahmad, J. Sugumaran, and N. F. Shoparwe, “Antifouling properties of PES membranes by blending with ZnO nanoparticles and NMP-acetone mixture as solvent,” Membranes (Basel)., 8 (2018) 131. doi: 10.3390/membranes8040131.
[46] M. Algamdi, I. Alsohaimi, J. Lawler, H. Ali, A. Aldawsari, and H. Hassan, “Fabrication of Graphene Oxide incorporated Polyethersulfone Hybrid Ultrafiltration Membranes for Humic Acid Removal,” Sep. Purif. Technol., 223 (2019) 17-23. doi: 10.1016/j.seppur.2019.04.057.
[47] V. Vatanpour et al., “Anti-fouling polyethersulfone nanofiltration membranes aided by amine-functionalized boron nitride nanosheets with improved separation performance,” J. Environ. Chem. Eng., 8 (2020) 104454. doi: 10.1016/j.jece.2020.104454.
[48] Y. Gao, M. Hu, and B. Mi, “Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance,” J. Memb. Sci., 455 (2014) 349–356. doi: https://doi.org/10.1016/j.memsci.2014.01.011.
[49] D. Liu et al., “WO3−x for rapid adsorption and full-spectrum-responsive photocatalytic activities,” J. Mater. Sci. Mater. Electron.,  29  (2018) 15029–15033. doi: 10.1007/s10854-018-9641-8.
[50] D. Shinde, P. Tambade, M. Chaskar, and K. Gadave, “Photocatalytic degradation of Dyes in Water by Analytical Reagent Grade Photocatalysts – A comparative study,” Drink. Water Eng. Sci. Discuss., 10 (2017) 109-117. doi: 10.5194/dwes-2017-20.
[51] S. Ren, C. Boo, N. Guo, S. Wang, M. Elimelech, and Y. Wang, “Photocatalytic Reactive Ultrafiltration Membrane for Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater Effluent,” Environ. Sci. Technol.,  52 (2018)  8666–8673. doi: 10.1021/acs.est.8b01888.
[52] S. F. Zakeritabar, M. Jahanshahi, and M. Peyravi, “Photocatalytic Behavior of Induced Membrane by ZrO2_SnO2 Nanocomposite for Pharmaceutical Wastewater Treatment,” Catal. Letters, 148 (2018) 882–893.
[53] H. Karimipour, A. Shahbazi, and V. Vatanpour, “Fabrication and characterization of a high-flux and antifouling polyethersulfone membrane for dye removal by embedding Fe3O4-MDA nanoparticles,” Chem. Eng. Res. Des., 145 (2019) 64-75. doi: 10.1016/j.cherd.2019.03.003.
[54] Z. Xu et al., “Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment,” J. Memb. Sci.,  520 (2016) 281-293. doi: 10.1016/j.memsci.2016.07.060.