Document Type : Review Paper

Authors

1 Chemical Engineering Department, University of Technology, Baghdad, Iraq.

2 Engineering chemical, Technology, Baghdad, Iraq.

3 Chemical Engineering Department, Faculty of Engineering, University of Technology, Iraq

Abstract

This paper aims to look at how pipeline steel and crude oil storage tanks resist corrosion in aqueous carbon dioxide (CO2) environments. To this aim, we have studied different inhibitors, particularly the heterocyclic inhibitor, which is used to prevent mild steel corrosion in various situations. On mild steel, the corrosion-prevention mechanism of heterocyclic inhibitors is also investigated. CO2 corrosion is the most frequent and dreaded type of corrosion in the oil and gas industry, and corrosion inhibitors are the most effective way to fight CO2 corrosion in mild steel. Nonetheless, continual exposure to pollutants and corrosion causes such as sulfur and chromate on pipeline surfaces is unavoidable. Because of their toxicity, commercial corrosion inhibitors are being used less frequently to protect the environment. As a result of the advent of "green" chemistry and fruit waste, both of which have been demonstrated to be efficient corrosion inhibitors, plant extracts have become popular. This research aims to compile a list of carbon dioxide corrosion inhibitors that have been proved to protect against this type of attack. The material on this page is relevant to the gas and oil industries, which rely on steel pipelines and crude oil tanks to transport oil and gas products. This study will also help develop better CO2 corrosion inhibitors for the gas and oil industries.

Graphical Abstract

Highlights

  • The corrosion of pipelines and crude oil storage tanks was reviewed.
  • The influence of CO2 on the corrosion process was estimated.
  • Corrosion control via heterocyclic inhibitors was addressed.

Keywords

Main Subjects

[1] X. Jiang, Zheng, Y.G., Qu, D.R., and Ke, W., Corros. Sci., 48 (2006) 3091–3108.
[2] P. C. Okafor, C. B. Liu, Y. J. Zhu and Y. G. Zheng, Ind. Eng .Chem. Res, 5 (2011) 7273–7281,2011.
[3] N. D. Nam, Q. V. Bui, M. Mathesh, M. Y. J. Tan and M. Forsyth, Corros. Sci., 76 (2013) 257–266.
[4] A. Dugstad, Fundamental aspects of CO2 metal loss corrosion, part I: mechanism, NACE 6111, NACE International Conference and Expo 2006.
[5] W.H. Durnie, B.J. Kinsella, R. De Marco, A. Jefferson, J. Appl. Electrochem. 31 (2011) 1221–1226,2001.
[6] R. Palou , Olivares-Xomel, O, Likhanova N. Environmentally friendly corrosion inhibitors.INTECH; Lecce, Italy;. Chapter 19, Developments in corrosion protection,(2014).
[7] N. Odewunmi , Umoren S, Gasem Z. Watermelon waste products as green corrosion inhibitors for mild steel in HCl solution. J. Environ. Chem. Eng. 2015 (2015) 286–296,doi:10.1016/j.jece.2014.10.014.
[8] Ime Bassey Obot, Ikenna B. Onyeachu, Saviour A. Umoren. Alternative corrosion inhibitor formulation for carbon steel in CO2-saturat brine solution under high turbulent flow condition for use in oil and gas transportation pipelines. Corrosion Science.1 (2019) 1-19 .
[9] F. Farelas, Galicia,M.; Brown, B.; Nesic, S.; Castaneda, H.: Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS. Corros. Sci. 52 (2010) 509–517, doi:10.1016/j.corsci.2009.10.007 .
[10] Olvera-Martínez, M.E.; Mendoza-Flores, J.; Genesca, J.: CO2 corrosion control in steel pipelines. Influence of turbulent flow on the performance of corrosion inhibitors. J. Loss Prev. Process Ind. 35 (2015) 19–28 . doi:10.1016/j.jlp.2015.03.006.
[11] A. Groysman, Street, D.: Corrosion in systems for storage and transportation of petroleum products and biofuels. In: Proceedings of the NACE Corrosion, (2014). doi:10.1080/1478422x.2018.
[12] H. K. Rashid a, Anees A. Khadomb, ,  3-Methoxypropyl-amine as corrosion inhibitor for X80 steel in simulated saline water , Journal of Molecular Liquids  (2020) 319 . doi:10.1016/j.molliq.2020.114326 .
[13] N.K. Othmana, S. Yahyaa,b,*, M.C. Ismailb. Corrosion inhibition of steel in 3.5% NaCl by rice straw extract. Journal of Industrial and Engineering Chemistry. 2 (2018) 1-13.
[14] N.A. Negm, M.A. Yousef, and M. Tawfik. Impact of Synthesized and Natural Compounds in Corrosion Inhibition of Carbon Steel and Aluminum in Acidic Media. Recent Patents on Corrosion Science,  3 (2013) 58-68 .
[15] Hayder Mohammed Issa* Azad H. Alshatteri, Corrosion Prevention of Cast Iron Industrial Water Pipes:A Preliminary Comparative Study of Hexamine and Aniline Inhibitors, Journal of Garmian University (2018).
[16] H. H. Uhlig,Corrosion and Corrosion Control ,  John Wiley and Sons Inc. ,2nd Edition, 1971.
[17] Q.J.M. Slaiman, Hasan, B.O., Study on corrosion rate of carbon steel pipe under turbulent flow conditions. Can. J. Chem. Eng. 88 (2010) 1114-112 . doi:10.1002/cjce.20383.
[18] K. R. Trethewey , and Chamberlain J.,Corrosion for Science and Engineering, Second Edition, Longman, , London, 1996.
[19] R. E. Melchers, the Effect Of Corrosion on the Structure Reliability of Steel Offshore Structures, Corrosion Science, 47 (2005) 2391-2410.
[20] A. Singh, K. Ansari, X. Xu, Z. Sun, A. Kumar, Y. Lin, An impending inhibitor useful for the oil and gas production industry: weight loss, electrochemical, surface and quantum chemical calculation, Scientific Reports 7 ,14904,(2017), doi:10.1038/s41598-017-13877-0.
[21] Q. J. M. Slaiman, Hasan, Basim O., Mahmood, Hussein A., Corrosion inhibition of carbon steel under two-phase flow (waterepetroleum) simulated by turbulently agitated system. Can. J. Chem. Eng. 86 (2008) 240-248. doi:10.1002/cjce.20027 .
[22] J. Haque, V. Srivastava, D.S. Chauhan, H. Lgaz, M.A. Quraishi, Microwave-induced synthesis of chitosan Schiff bases and their application as novel and green corrosion inhibitors: experimental and theoretical approach, ACS Omega 3 (2018) 5654-5668, doi:10.1021/acsomega.8b00455.
[23] K. H. Rashid, and Khadom. A. A., Optimization of Inhibitive Action of Sodium Molybdate (VI) for Corrosion of Carbon Steel in Saline Water Using Response Surface Methodology, Korean Journal of Chemical Engineering, 36 (2019)1350-1359. doi:10.1007/s11814-019-0291-1.
[24] O. Basim , Hasan*, Sahir M. Aziz,Corrosion of carbon steel in two phase flow (CO2 gas-CaCO3 solution)”, Journal of Natural Gas Science and Engineering controlled by sacrificial anode 46 ( 2017) 71-79. doi:10.1016/j.jngse.2017.06.032 .
[25] M.A. Mazumder, H.A. Al-Muallem, S.A. Ali, The effects of N-pendants and electron-rich amidine motifs in 2-(p-alkoxyphenyl)-2-imidazolines on mild steel corrosion in CO2-saturated 0.5M NaCl, Corrosion Science 90 (2015) 54-68. doi:10.1016/j.corsci.2014.09.014 .
[26] S. Nesic, Key issues related to modeling of internal corrosion of oil and gas pipe linesea review, Corrosion Science 49 (2007) 4308-4338 .
[27] J. Heuer, J.F. Stubbins, An XPS characterization of FeCO3 films from CO2 corrosion, Corrosion Science 41(1999) 1231-1243, doi:10.1016/s0010-938x(98)00180-2 .
[28] D. Lopez, T. Perez, S. Simison, The influence of microstructure and chemical composition of carbon and low alloy steels in CO2 corrosion. A state-of-the-art appraisal, Materials and Design 24 (2003) 561-575. doi:10.1016/s0261-3069(03)00158-4 
[29] K. George, Nešic, S.: Investigation of carbon dioxide corrosion of mild steel in the presence of acetic acid-part 1: basic mechanisms.Corrosion 63 (2007) 178–186 .
[30] S. Nesic, K.-L.J. Lee, V. Ruzic, A Mechanistic Model of Iron Carbonate Film Growth and the Effect on CO2 Corrosion of Mild Steel, Corrosion 2002, NACE-02237, NACE International, 2002
[31] D. A. López, Schreiner, W.H.; De Sánchez, S.R.; Simison, S.N.: The influence of carbon steel microstructure on corrosion layers: an XPS and SEM characterization. Appl. Surf. Sci. 207 (2003) 69–85 . doi:10.1016/s0169-4332(02)01218-7.
[32] S. Nešic, Lee, K.-L.J.: A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 3: film growth model. Corrosion 59 (2003) 616–628.
[33] J.  Mathiyarasu, SS Pathak, V Yegnaraman, Corros Rev, (2006) 24-307.
[34] SMA Shibli, VAnitha Kumary, Anti-Corros Method Mater 51, 2004.
[35] S. Nesic, Postlethwaite J., and olsen S., Corrosion, 52 (1996) 280-  294.
[36] S. Hernandez, Bruzual J., Lopez-Linares, F., and Luzon, J. Isolation of Potential Corrosion Inhibiting Compounds in Crude Oils. Proceedings of Corrosion/2003, NACE International, Houston, Taxes, paper no. 330,2003.
[37] S. Papavinasam, Doiron, A., Panneerselvam, T., and Revie, R.W. Effect of hydrocarbons on the internal corrosion of oil and gas pipelines. Corrosion, 3 (2007) 704-712.
[38] N. Hackerman, Langmuir 8-922,1987.
[39] U. Osokogwu and E. Oghenekaro. Evaluation of Corrosion Inhibitors  Effectiveness in Oilfield Production Operations. International Journal of Scientific & Technology Research, 1 (2012) 19-23.
[40] C. Anbarai, S. Rajendran, M. Pandiarajan, and A. Krishnaveni. An Encounter with Corrosion Inhibitors. European Chemical Bulletin, 2 (2012) 197-207.
[41] B. Kar. Study Of Mitigation of Corrosion Rate of Mild Steel using Green Inhibitors, PhD diss., Jadavpur University, India. 2009.
[42] M. Desimone, G. Grundmeier, G. Gordillo, and S. Simison. Amphiphilic amido-amine as an Effective Corrosion Inhibitor for Mild Steel Exposed to CO2 Saturated Solution: Polarization, EIS and PM-IRRAS studies. Electrochimica Acta, 56 (2011) 2990–2998.
[43] J. Y. Sun, Jepson W.P., and Ohio U.,  Slug Flow Characteristics and Their Effect on Corrosion Rates in Horizontal Oil and Gas Pipelines, Society of Petroleum Engineers, 14, 1992. doi:10.2118/24787-MS .
[44] S. Umoren, Obot, I.; Madhankumar, A.; Gasem, Z. Performance evaluation of pectin as ecofriendly corrosion inhibitor for X60 pipeline steel in acid medium. Carbohydr. Polym., 124 (2015) 280–291.
[45] K.H. Rashid, and Khadom, A. A., Sodium sulfite as an oxygen scavenger for the corrosion control of mild steel in petroleum refinery wastewater: optimization mathematical modeling, surface morphology and reaction kinetics studies. Journal of Reaction Kinetics, Mechanisms, and Catalysis, 129 (2020) 1027-1046 . doi:10.1007/s11144-020-01738-3.
[46] T. Eicher, S. Hauptmann, A. Speicher, The Chemistry of Heterocycles: Structures, Reactions,Synthesis, and Applications, Wiley, New Jersey, 2013.
[47] M. Abdallah, Megahed, H.; Radwan, M.; Abdfattah, E. Polyethylene glycol compounds as corrosion inhibitors for aluminum in 0.5 M hydrochloric acid solution. J. Am. Sci., 8 (2012) 49–55 .
[48] M. Al-Otaibi, Al-Mayouf, A.; Khan, M.; Mousa, A.; Al-Mazroa, S.; Alkhathlan, H. Corrosion inhibitory action of some plant extracts on the corrosion of mild steel in acidic media. Arab J. Chem. 7 (2014) 340–346. doi:10.1016/j.arabjc.2012.01.015 
[49] T. Ibrahim, Gomes, E.; Obot, I.B.; Khamis, M.; Abou Zour, M.:Corrosion inhibition of mild steel by Calotropis procera leaves ,Krishnaveni, K.; Ravichandran, J. Effect of aqueous extract of leaves of Morinda tinctoria on corrosioninhibition of aluminium surface in HCl medium. Trans. Nonferrous Met. Soc. China ,24 (2014) 2704–2712
[50] L. Liao, Mo, S.; Luo, H.; Li, N. Longan seed and peel as environmentally friendly corrosion inhibitor for mild steel in acid solution: Experimental and theoretical studies. J. Colloid Interface Sci., 499 (2017) 110–119.
[51] N. Odewunmi, Umoren, S.; Gasem, Z.Watermelonwaste products as green corrosion inhibitors for mild steel in HCl solution. J. Environ. Chem. Eng.  3 (2015) 286–296.
[52] G. I. Akhmadeeva, and Zagidullin, R.N. Inhibitor of hydrogen sulfide corrosion of steel based on di-and polypropylene polyamines. Protection of Metals, 42 (2008) 577-582 .
[53] L. S. Moiseeva, and Rashevskaya, N.S. Providing Protection against Carbonic-Acid Corrosion for Equipment in the Oil-and-Gas and Chemical Industries. Chemical and Petroleum Engineering, 37 (2001) 54-59.
[54] F. Bentiss, Traisnel, M., and Lagrenee, M. A new triazole derivative as inhibitor of the acid corrosion of mild steel: electrochemical studies, weight loss determination,SEM and XPS. J Appl Electrochem., 31(2001) 449. doi:10.1016/s0010-938x(98)00153-x .
[55] V. M. Abbasov, Gadjiyeva, Magerramov, R. S., Akhmedov, N.S., and Rasulov, S.R. Influence of potassium salts of nitro derivative high α-olefins in 1% NaCl solution saturated with CO2 on steel corrosion ,Azerbaijani Oil Industry ,2010
[56] X. Guan, Y. Hu, Imidazoline derivatives: a patent review (2006epresent), Expert Opinion on Therapeutic Patents 22 ,2012
[57] M. V. Abbasov, Hany M. Abd El-Lateef,*, Leylufer I. Aliyeva, Ismayil T. Ismayilov, Efficient Complex Surfactants from the Type of Fatty Acids as Corrosion Inhibitors for Mild Steel C1018 in CO2-Environments, Journal of the Korean Chemical Society,  (2012) 1-10 .
[58] P. DeSantis, A. L. Kovaos, A. M. Liquori, and L. Marearella, J. Am. Chem. SOC.. 87, 4965; L. Mazzarella, A. L. Kovacs, P. DeSantis, and A. M. Liquori, Acta Crust., in press. (1965).
[59] M. Slimane • F. Kellou • S. Kellou-Tairi, Electrostatic adsorption of hexamethylenetetramine as a corrosion inhibitor for FeTi1.88C2.35 cast iron in electrolytic acid solution, Springer Science Business Media Dordrecht (2015).
[60] J. Bashir ,Usman · Shaikh A. Ali "Carbon Dioxide Corrosion Inhibitors: A review .rab J Sci Eng  (2017) 1-22 .
[61] I. Jevremovic, M. Singer, S. Nesic, V. Miskovic-Stankovic, Inhibition properties of self-assembled corrosion inhibitor talloil diethylenetriamine imidazoline for mild steel corrosion in chloride solution saturated with carbon dioxide, Corrosion Science 77 (2013) 265-272 . doi:10.1016/j.corsci.2013.08.012 .
[62] A. Singh, K. Ansari, X. Xu, Z. Sun, A. Kumar, Y. Lin, An impending inhibitor useful for the oil and gas production industry: weight loss, electrochemical, surface and quantum chemical calculation, Scientific Reports 7 14904(2017). doi:10.1016/j.corsci.2013.08.012 .
[63] A. Singh, K. Ansari, A. Kumar, W. Liu, C. Songsong, Y. Lin, Electrochemical, surface and quantum chemical studies of novel imidazole derivatives as corrosion inhibitors for J55 steel in sweet corrosive environment, Journal of Alloys and Compounds , (2017) 712.
[64] A. Singh, K. Ansari, Y. Lin, M. Quraishi, H. Lgaz, I.-M. Chung, Corrosion  inhibition performance of imidazolidine derivatives for J55 pipeline steel in acidic oilfield formation water: electrochemical, surface and theoretical studies, Journal of the Taiwan Institute of Chemical Engineers  95 (2018 ) doi:10.1016/j.jtice.2018.07.030.
[65] A. Singh, Y. Lin, I. Obot, E.E. Ebenso, K. Ansari, M. Quraishi, Corrosion mitigation of J55 steel in 3.5% NaCl solution by a macrocyclic inhibitor, Applied Surface Science 356 (2015), doi:10.1016/j.apsusc.2015.08.094 .
[66] V. Jovancicevic, and Ramachandran, S. Molecular modeling of the inhibition of mild steel carbon dioxide corrosion by imidazolines, Corrosion, 55.631-631,199. doi:10.5006/1.3283986
[67] P. Okafor, X. Liu, Y. Zheng, Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution, Corrosion Science 51) 761-768,2009, doi:10.1016/j.corsci.2009.01.017 .
[68] G. Zhang, C. Chen, M. Lu, C. Chai, Y. Wu, Evaluation of inhibition efficiency of an imidazolinederivative in CO2-containing aqueous solution, Materials Chemistry and Physics 105  (2007) 331-340. doi:10.1016/j.matchemphys.2007.04.076 .
[69] D. Ortega-Toledo, J. Gonzalez-Rodriguez, M. Casales, L. Martinez, A. Martinez-Villafan˜ e, CO2 corrosion inhibition of X-120 pipeline steel by a modified imidazoline under flow conditions, Corrosion Science 53 (2011) 3780-3787 doi:10.1016/j.corsci.2011.07.028 .
[70] C. Zhang, H. Duan, J. Zhao, Synergistic inhibition effect of imidazoline derivative and l-cysteine on carbon steel corrosion in a CO2-saturated brine solution, Corrosion Science 112 (2016) 160-169. doi:10.1016/j.corsci.2016.07.018.
[71] S. Ambrish , K.R. Ansari,*, M.A. Quraishi, Inhibition effect of natural polysaccharide composite on hydrogen evolution and P110 steel corrosion in 3.5 wt% NaCl solution saturated withCO2: Combination of experimental and surface analysis, Science Direct, (2020) 1-11 .
[72] B. Ik. Onyeachu, Ime Bassey Obot*, Akeem Y. Adesina, Green corrosion inhibitor for oilfield application II: The time–evolution effect on the sweet corrosion of API X60 steel in synthetic brine and the inhibition performance of 2-(2-pyridyl) benzimidazole under turbulent hydrodynamics, Corrosion Science, (2020) 1-17. doi:10.1016/j.corsci.2020.108589 
[73] I.B. Onyeachua, D.S. Chauhana, K.R. Ansaria, I.B. Obota, M.A. Quraishia,* Aeshah H. Alamrib, Hexamethylene-1,6-bis(N–D-glucopyranosylamine) as a novel corrosion inhibitor for oil and gas industry: Electrochemical and computational analysis, New Journal of Chemistry, (2019) 1-29.
[74] P. Gaetano , Marcin Go´ rny, and Jacek Banas, Corrosion Inhibition of Pipeline Carbon Steel (N80) in CO2-Saturated Chloride (0.5 M of KCl) Solution Using Gum Arabic as a Possible Environmentally Friendly Corrosion Inhibitor for Shale Gas Industry, Journal of Materials Engineering and Performance., (2019) 1-13. doi:10.1007/s11665-019-04379-3 
[75] T. Mingjin, Jianbo Li, Zhida Li , Luoping Fu, Bo Zeng  and Jie Lv , Mannich Base as Corrosion Inhibitors for N80 Steel in a CO2 Saturated Solution Containing 3 wt % NaCl,(2019) 1-15. doi:10.3390/ma12030449 .
[76] Q.H. Zhang , B.S. Hou  , N. Xu a , H.F. Liu  ,  G.A. Zhang ∗, Two novel thiadiazole derivatives as highly efficient inhibitors for the corrosion of mild steel in the CO 2 -saturated oilfield produced water, (2018) 1-11. doi:10.1016/j.jtice.2018.11.022. 
[77] D.Yuan , Bruce Brown, David Young, Marc Singer, Effectiveness of an imidazoline-type inhibitor against CO2 corrosion of mild steel at elevated temperatures (120 oC-150 oC, NACE International1, (2018)1-22.
[78] Hu Wang, Jun Tang, Juan Xie,* Corrosion Inhibition of N80 Steel with the Presence of Asymmetric Gemini in a CO2-saturated Brine Solution, International Journal of Electrochemical Science, (2017) 1-13 . doi:10.20964/2017.11.58 .
[79] K.R. Ambrish Singh .Ansari, Xihua Xu, Zhipeng Sun, Ashok Kumar& Yuanhua Lin, An impending inhibitor useful for the oil and gas production industry: Weight loss, electrochemical, surface and quantum chemical calculation, Scientific Reports ,  (2017) 1-17 .
[80] C. solution. Zhang, Hanbing Duan, Jingmao Zhao∗,Synergistic inhibition effect of imidazoline derivative and l-cysteine on carbon steel corrosion in a CO2-saturated brine solution, Corrosion Science, 1-10. (2016)
[81] Ilim*, Alan Jefferson, Wasinton Simanjuntak, Marc Jeannin, Synthesis and Characterization of Oligomer 4-Vinylpyridine as A Corrosion Inhibitor for Mild Steel in CO2 Saturated Brine Solution, Indones. J. Chem, (2016)1-10.
[82] I. Taleb, Elron Gomes, Ime B. Obot, Mustafa Khamis & Mohamed Abou Zour, Corrosion inhibition of mild steel by Calotropis procera leaves extract in a CO2 saturated sodium chloride solution, Journal of Adhesion Science and Technology ,  (2016) 1-22 .
[83] I. T. Ismayilov, Hany M. Abd El-Lateef, V. M. Abbasov, E. N. Efremenko, L. I. Aliyeva1 and Ch. K. Salmanova, Enhanced corrosion inhibition of mild steel in CO2-saturated solutions containing some novel green surfactants based on cottonseed oil, Int. J. Corros. Scale Inhibit., ( 2015) 1-18 .
[84] Ranran Yang, Yanqiu Zhou, Lan Ma, Lei Zhang and Zhao Chen, Water-soluble thiosemicarbazide-imidazolederivative as an efficient inhibitor protecting P110 carbon steel from CO2 corrosion, Emerald Group Publishing Limited, (2015) 1-9.
[85] M. Hany . Abd El-Lateef *, V.M. Abbasov , L.I. Aliyeva , Mai M. Khalaf , Novel naphthenate surfactants based on petroleum acids and nitrogenous bases as corrosion inhibitors for C1018-type mild steel in CO2-saturated brine, Egyptian Journal of Petroleum,(2015) 1-8 . doi:10.1016/j.ejpe.2015.05.010 .
[86] W.S. M. Jawich, G.A. Oweimreen, Shaikh A. Ali , Heptadecyl-tailed mono- and bis-imidazolines: A study of the newly synthesized compounds on the inhibition of mild steel corrosion in a carbon dioxide-saturated saline medium, Corrosion Science, (2012) 1-11. doi:10.1016/j.corsci.2012.08.001 .
[87] P. C. Okafor, C. B. Liu, Y. J. Zhu, and Y. G. Zheng*, Corrosion and Corrosion Inhibition Behavior of N80 and P110 Carbon Steels in CO2-Saturated Simulated Formation Water by Rosin Amide Imidazoline, Industrial & Engineering Chemistry Research,  (2011) 1-10. doi:10.1021/ie1024112 .
[88] M.P. Desimone,∗, G. Grundmeier, G. Gordillo, S.N. Simison, Amphiphilic amido-amine as an effective corrosion inhibitor for mild steelbexposed to CO2 saturated solution: Polarization, EIS and PM-IRRAS studies, Electrochimica Acta, (2011) 1-9.
[89] I. Jevremović, Aleksandra Debeljković, Marc Singer, A mixture of dicyclohexylamine and oleylamine as a corrosion inhibitor for mild steel in NaCl solution saturated with CO2 under both continual immersion and top of the line corrosion, J. Serb. Chem. Soc., 77 (2012)  1047–1061.
[90] M. Vagif . Abbasov, Hany M. Abd El-Lateef,*, Leylufer I. Aliyeva, Ismayil T. Ismayilov, Efficient Complex Surfactants from the Type of Fatty Acids as Corrosion Inhibitors for Mild Steel C1018 in CO2-Environments, Journal of the Korean Chemical Society.,  (2012) 1-10 .