P

INVESTIGATION OF THE TRAVELLING WAVE EFECTS
IN ANALYSIS OF SYNCHRONOUS MACHINE TRANSIENT

BFHAVIOUR
11 . THE SYNCHRONOUS MACHINE PERFORMANCF.
by

Dr . m . Serry Taha
College of Engineering
Sulaimaniya University

Iraq
Scientific Jousrnal
The University of Technology .
Raphdad
55

https://doi.org/10.30684/€etj.1977.2.4
2412-0758/University of Technology-Iraq, Baghdad, Iraq
This is an open access article under the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0

vl . )
No .2
Ixvember 1977


https://v3.camscanner.com/user/download

AW g G L Sl o i o L
Gl S s () = Dt (sl YN

b g 30t )55
dhl LS — Ll il

Jul Lo

Sy Wl a3, oS0 (ol SN Sy omt Jy Lo SV e Al e U pudl) Es e
woy ol U )y i JUAST e I e 68 RS S i e G
ol G Sl ot gy et SN Sl W G 1T s 5 g 3l SIL Lol DYl
AL ada e oY

Lol SIA W et e S a el L e ) 23y e (S 2l
il K A SUslezl e &ll3y bl Sy

ABSTRACT:

This is the second of a series of papers interested mainly in the overall transient behaviour of an
integrated power system constituting a synchronous machine connected to a large network through
a long line. After deriving an expression for the long line as a synchronous machine’s terminal
constraint in the first paper, this paper investigates the machine’s electromagnetic transients
involving line’s short lived travelling wave effects. A digital model is derived for the study of the
transient behaviour of the system involving the long line effects but excluding, the action of
machine’s automatic excitation regulator.

NOMENCLATURE

191 Y Matrix

p d/dt.

d.q.0 Direct., quadrature and zero components respectively.

D. Q Direct and quadrature damper respectively.

a, bc Phase values.

i, v, Instantaneous current, voltage and flux linkage respectively.

a,f, D Q Stator, field. direct axis and quadrature axis damper circuits respectively.
R.L.C.G.Z Resistance. Inductance, capacitance, conductance and impedance respectively.
w. Wy Rotor angular velocity in per unit and radians respectively.

1. INTRODUCTION

Analysis of an integrated power system’s behaviour makes it desirable to recognize three distant
periods; namely the surge period, the dynamic period and the steady state period. This classification
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depends mainly upon the fact that always exists a wide span between the system’s time constants.
Such classification of course greatly facilitates the solution of the problem whose nature necessitates
the applications of more than one transformation to the involved equations. However, such a
classification; with the use of modern derivative type excitation system regulator’s becomes
inadequate. The use of regulators whose action is dependent upon changes of first, second and /or
higher erivatives of the controlled variables; makes it necessary to allow for wave propagation in a
long line simultaneously with the dynamic transient phenomena [6. Hence, with the long line
represented as in the first paper, the whole system electromagnetic transient allowing for line’s is
investigated throughout the subject paper. .

2. SYSTEM EQUATION

From the accompanying paper, a long line can be represented by the matrix equation:

GV+PCV=NI+PMI (1)
" where for completely transposed system we have:-
M m m
M = m M
m m M

{L{C + 3c)
+ 2 .

N’ n’ n’
N = n’ N’ n
n’ n’ N’
T
2
o= - JrG-g + N

| A capital letter designates diagonal element and a small letter designates a ofi-diagonal element of a
matrix.

Applying the modified park’s transformation [3] (power invariant) to both sides of equation (1).
we obtain:

kK[GV+PCV]=KINI+PMI]

(2)
- Substituting for K from equation (22), bearing in mind, for balanced operation,
c

1=a
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where F may be i, v or ¥, we get:-

For direct axis:;-

G- g Vg t {C -0 (de - qu)

= (N' - n')Id + M - m) (pId - qu)

For quadrature axis:

(G —g).Vg +(C -0 (de + qu)

=(N'-n)l +(M—m)(wld+pl)

Re-writting equations (3) and (4) in matrix form, and after collecting voltage terms in one side, and

current terms in the other sids, we get:-

G-g)+

—w(C—-c)
p(C—c)

(C—g)+
w(C—c)

P(C—c)

From the last equation, we get:

1
(A+pB) +K?

where:
A=(G-g)

(G—g)+
Va

p(C—c)
Vq w(C-c¢)

(N—n‘) |
+p(M~m)
(N=n)
Vq w(M—m) iq
+p(M—m)
=1
(N“n)
-w(C—c) —w(M-m)
+p(M—m)
(G-g)+ (N=nf
w(M-m)
p(C—c) +p(M—m)
(A+pB)e+  K(e+ph—
i
d
pf) + Kh h(A +pB)
h(A +pB) (A+pB)(e+
i
—Kle+ph ph)+Kh :
B=(C-c)
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e = (N - n) f=M-m)
K = w(C —c), h=wM - m)

vritting from the appendiix equation (30)):
ra ) id 0 1

ne side. we obtain:-

ides by {(A + pB)? + K*} . we get:
0 -1

(A + pB)? + K?J. w —pwy,

59

Xar*ip .

0 1 ‘Pd 5 ‘I’d
—-w _ s
"b
-1 0 ‘Pq b 4
(A +pB)(r A +e) (Ke — Ah) iq
+p(ryB +1 + p(Kf — Bh)
B 1 + K(r K + h)
(A +pB)* + K2 ,
(Ah — Ke) (A+pB)(r A +e)
+ p(Bh — Kf) +p(r B + f)
+ K(r,K + h) iq
Re-writting equation (29) from appendix, then:
1 /Xd' 0 q’d = (an = xf
” Eﬂ
0 l/xq | ‘Pq d

Wd

(6)

).lb

] bétituting for the current matrix in equation (6) from this last equation. and multiplying both
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Kir, +h)+(a +p3‘;.[!'ﬁr“\ +e) (Ke—Ah) + p(Kf—Bh)
+p(.‘.’aB +0)
B (Ah—Ke) + p(Bk — XD K(r,K+h)+{A +pB).
(r,A+e)+plr,B+ )
D .
1 /xti 0 ‘P’d Eq' - (an = —xf—).lD
% - "
0 1 /}:('}' ‘l’q E.d

Collecting homogeneous terms. and rearranging, we get:-

m
(-:—_E-Jr pwy,U)

(Ed—+ wu) v d
% )
n m ;
(Wil <] (—+ pwpu) \}lq
xd xn
—m n % Xaf*iD
—_— — E'—(x,n— )ig
] ; aD
‘(d .'\q Xf
(7al
—-n ~m
where
M= K{rHKJrh) + (A+pB) . (r,A+c) + p(raB%-D
= P B0 40 Bl A+l + A B+D + Ar,A+c) + KIK+h)
n = h{A+pB} — Kle+pf) = pBi-Kfj + Ah—Ke) (7b)
U= (A+pB)* + K* = P'B? + P(2AB) + AZ+K?) tion (7a)
Substituting from appendix equations (25b), (24) and (27b) for E; « ip and D into cquat
we get: :
[ m "
(;‘;—*' wau) (wu — _:'_=} \Pd
d X
q =
n
(wo - —_ m
g7l + pw, u ¥
X X b q
q
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n
-m =1 W

- = Yar e | GarYap P ¥

1 Q I ab w
d Xp Xp "b'D
-n m
o “a *aQ- lPO
X4 Xa -
0
Re-aranging this last equation, we get: '

P o n | pmb I mnxﬂQ l TE—-
(—+ pwpu) : (wu — ——) | l e— 1 ey
X ! Xq | Wern¥d I *q-%0 | f'd

ll m I pnb med | D
i trtowgl) | morral el

% I Xq , Wpn¥g ' ¥, Td

J

:,:d Q0
X ‘Pq = ( 3\

‘PD B

Q

‘%‘f 0

where b = {xaf Xm /xf) - Xip

Now. let us accomplish the coefficient matrix by adding 3 rows. and hence it becomes a square
matrix. whose inverse. generally (if nonosignular) exists. These rows. as the author proposes. can be
derived by differentiating twice the appendix equations (36). (37) and (38). Thus equation (8) now

cart ¢ changed into:
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Isuuedgwe) yum psuueog

3¢9

mp  XarXmp

n
(—nl-+ pwpu) (N ———j g -x,p] ~™aQ s
X, X Wy . I« X X af
d q b D"d f x”'xQ
q XpXg ‘Vd
n m nP - Xa¥ip NXaf W
(i) (—— + pwpu) T = Xap) Ed
X4 Xq b Dd t
pAr 3 2 (XX, — X20) pir
D . sl ol 0 D 2,
a Wh a a
(XpXafr = XaD¥f) (anxaf -
xdxm)
P*ryx 3
0 _~ Q%aQ 0 ) @
(Xz;Q - quQ) wy f
2
p .rQ.xq
v2
quQ xaQ)
PRk g 2. . ;
P*XapXap 0 P3(x,°p f%’z‘)l()) " P XaTdo W
(anxaf - xdxm) WpIp d X D
Xaf
L (dexaf_xdfo)
= O 3 oy
¥ 0 0 0 p?*Ey ]’ (9)
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where a = XqXpXp + x;Dxf - xéFXD - xzﬂ)xd

equation (9) can be put in the matrix concise form:

{PPW; + PPW, + PW, + Wg} Y =F

where:
B(r.B + X ¢X
w,..B2 0 Fal +1 ( af "D — Xap) 0 0
b Wy -Ip-X4 Xp
0 wb.Bz 0 ‘ 0 0
1
= 0 -
W, 0 w, 0 0
1
0 0 0 — 0
Wy
2 X T1
. . Xpa(X2p) Xg%p) 0 af*do

Wb.rD(X anaf— dem]

(11)

(10)
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W,

5‘_,:1 +K?) +

x:—x:v

X
f
“>:.=> +e¢)+ _A:.,_?‘ +h)

( )

xm__._:m.\:

Blr,A+e) (Kf=Bh)
—_— —_—
= p ) , +Alr, B+1)
*d Xq Wb ThXg xo,.xc a
Alr B +1)
e 2ABw (
X, fxpeg)
d
ar*m Xa0) XaBh KD
2ABw + W, (A2+K2) + (X, 3 — ———). —3 :
/ b ab XX XX
g q Q rd
e B(r A +e) Ke— Ah
(Kl — Bh) a . Lidmis (r, A +c)
" L WL X
X4 *q b'D%d
B+
Mogtrl) A B+)
Xg

0

(13)
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In solving the investigated system equation (9Y). throughout this paper. we shall discuss its

solution with the discard of the elfect of the excitation regulator. i.c I’-'}-',rd will be replaced by zero.
tlowever. inclusion of excitation regulator’s elfect will be discussed in a third paper.
Thus equation (10) becomes:-

(p‘\\’; + p? W] + p\\’1 + W()) Y =0 (13)
To solve this last equation. let us proceed as follows:-
at ¥y, =1 ¥ (16a)
, ’ — 7 (lhb)
\2 =\] kol (16c)
\l; - \02 = pz\'

and from cquation (15)
Y4 = \'3 =p'Y

= =W TIW, Vg WY, W Y (16d)
The set of equations (16a) up to (16d) can be rearranged into the form:
Y 0 I 0 Y,
P Y, = 0 0 I Y; (17)
Y, Tl -wi'w, —wi'w, —wi'w, Y,

where
Yy Y, and Y3 designate 5 x1 matrices.

th

0 . 1 designate zero and identity matrices of 5™ order
respectively.
Fquation (17) can be re-written in the concise form:
PX = A X (18)

where

Y,
N = Y, |ie. a 15" order column matrix.

Y,

0 I 0

A = 0 0 |

—wWolw, —Wilw, —wlw,

Owing to the fact that thediagonal clements involve zeros. hence a convergent solution by Rung-
Kutta method is practivally impossible.

Solution of equation is readily Known (4) and is:-
1 X =c'M. Xy (19)
where X is the matrix X att = 0
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Substituting from the appendix equation (42) for the transition matrix e"* . we finally get
the solution:

X=—[ ¢ A+ M) o Q+ Ayl
(}\.l—)»z).-(;\'l}\'li)

A+ 013 A+0,0) ...

+
'(}\_’—}\.l)(}\._y—)\;)..()\_)—‘ "li)

UK+ A1) %

C—J.Hl

+
(}\..;'—}\l)--“\l%—}‘-”)

{/‘ + }\'I l) ot {A + >&,|4 l} ] X() (2())

where A} . A,....A 5 are the cigen values of —

Once finding out the time variation of the flux linkage (and its first and second derivative) matrix X.
then: back substitution from equation (20) into the appendix equation (29a): ig and i_ are
calculated. Again, substituting into into equation (30) V and V_ are calculated. and consequently
the machine terminal voltage is calculated by aid of equatlon (5141).
Itage and current any point along the line are calculated by aid of the formula (from the
accomanying paper):-

v o

~XA

1
o

I |
X 0

where () designates sending end.

NUMERICAL EXAMPLE

Using the above mentioned algorithm. a computer run is made with the data given in Table I.
referred to 500 kV and 1236 MVA base.

—_— Table_I

Gen. stator values Total reacts. of
p.v. : rotor wdgs.
X x 4 " {
“‘*-(-j———‘__.ﬂ_____ X4 Xq fa X 2 ________\.9._-—

—L 067 o33 023 0003 111 0995 006l
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Mutual reacts. of
rotor wdgs

Rotor circuit

resistances
Naf X Xan XaQ Tr ) 0
_ 0.87 0.87 0.87 0.52 0.0004 0.018 (.0063
Time const (Line Paramcters /Km) x 10"
Tdo T&O wy r L, @ g C c
8.54 0.31 314 60 3 0.5 0.2 3 1 800

Figure (1) shows the computed values for the per unit generator terminal voltage (vy).
receiving end voltage (vy,). line sending end current variations for the case of sudden
switching off of line remote end breadder when the system initially with the following
conditions:

Recciving end load =1+ j0.3 PU
Recciving end voltage = 0.955 P.U
Sending end voltage = 1.035 P.U
Generator terminal voltage = 1.045 P.U.
Shunt reactor reactive power compenstion = 0.5 R

CONCLUSION:
Throughout this paper formulae are derived to link the fast transient line switching domain with

the synchronous machine electromagnetic transient time domain. Although the excitation regulator
effect is not investigated in the subject paper. yet the derived equations are the natural entrance for

this target. however. the influence of excitation regulator upon the overall line switching and
synchronous generator’s electromagentic (stator) transient behaviour is reserved for a future paper.

APPENDICES
I. SYNCHRONOUS MACIHINE EQUATIONS
According to Park equations [1. 2 and after proper selection of transformation matrices such
that power should be invariant anywhere in the system [ we have:

Fy B,
F B

0
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cos 8 cos (0—47)

=J3 | sin® sin (0—4m)
1 I

JT Jz

where F designates v, i. and¥

d.q.0. designate direct, quadrature and zerc co

a.b.c designate phase values.

Conversely

Es Fy
-l

Fi =K Fq

Fo Fc

Applying transformation matrices (22) and (23) it had been proved elsewhere [7]

following relationships are derived:

la = Xdlg *+ Xafp + Xap'p

a = Xdlq * *aQ'

l'o = xoip

It = Xafd + Xt * Xplp

ID = Xpig * xmif + Xplp

I.Q = xa()‘q + inQ

Vg = ~Talg — (1/wp) p¥g - quq.
¥ = _raiq — (i /wb) p‘{’q + w‘i"d
Yo = —fglp = 1w ) p¥,

Vp =t + (1w p ¥

0 =rpip + (1/wy) p ¥

0 = 'rQiQ + (1 /'wb) p Yo

70

cos (0+4n) Fa'

sini (0+4n) Fy
— F,
N )

K 2 (23)

(22)

. that the
(24aj
(24b)
(24c¢)
(24d)
(24e)
(240
(242)
(24h)
(24i)
(24))

(24K)
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Aultiplying out both sides of equation (24d) by (x,/%p) then subtracting from equation (24a). we

get:
X x2 X, X
af e QL al"”*iD_ . .
\pd_(?—)‘l’f—(xd ——X )|d+(an———).1D (25)
f f A
XZ
But  Xg— - = xj (25a)
1
= Direct axis transient reactance and
X
*

e.m.f. behind transient reactance.

Thus. equation (25) becomes, after rearrangement;-

rs = ’ R i 2
xdldv—(\*’d—Bq)'{’(an xf ).ID ( 6)

Again, multiplying out both sides of equation (24f) by (xaQ /xo); then subtacting.from equation
(24b), we get:

X Xa() .
v _(=2Q ) Y=g g (27)
q xQ xQ
xZ
andx” =x _ — aQ (27a)
Q
= Quadrature axis subtransient reactance.
and let us define: :
]
X
Ej = (_ig-). ¥ (27b)
X,
Q
Thus, equation (27) becomes:
W E§ =xqiq» (28)
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From equations (26) and (28), we can weite down:-

i/% 0 Y4
= ‘{
" U
q 0 114 K
X, X
B’ —( af""fD )iD
TR -
Eq

Substituting into equation (29) for iD from equation (24L). and for E&' from equation (27b) and for
Eq' ‘from equation (25b) we get:

ig 1/x4 ' 0 ¥4
— '{ -
iy 0 i/xg ¥q
X_oX
fD
(xar‘l’f/xf) + (an - (an _arb \p ‘PD /wbrD
X
f (29a)

(xaQ‘ /xQ) ‘I’Q

Also, rewritting equations (24g), (24h) in matrix form, then:

A 14 ¥4 ¥4
3
. \ \p
Vg ' | Y ‘q
where
AL —— ra I2 x2 (308)
0 1
_ (30b)
AM = —w
1 0
30c)
Ag = — 1fwy .1 (

To find out explicit expressions for machin’s current; then, from the set of appendix equations (24a)

up (24f) excluding (24c), we have:
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iq X4 0 XaD 0 Xat | —1 l*’d
iy 0 Xq 0] X10 0 ‘Pq
'D - XaD 0 D) 0 XD o
i 0 Xa0 0] X0 0 : ‘PQ
'f Xaf 0 XD 0 Xg W
Or

ly 813 : - : A5 ¥4

iq q,q

'D = ¥ (31)

iQ lPQ

ig asq ; . ; agg e

Since relations between ige i and machine fluxes have be implicity obtained when investigating the
machine’s terminal constraint, then we shall the i iQ. and ip - fluxes relationships.

Thus, after executing (31a). we get:
- (xpg —Xap) ¥p + XpyXar=Xap¥p Vg + Xap —Xg¥g) ¥
2 2
(XgXpXp + XapXp — XaiXp ~ XaiXp ~ ¥fpXg)

(32)

To avoid complication. i in the expression of ig will be substituted from (24L) and iq in the

X i i i i . e et = I
puossiom gf o) @il G sebstitutiod ipH (24m)Thus. after elimininating iq from equations (24a)

and (24d), we get:

ip = 1 {x.n ¥ ¥

= a1 N %d D
‘{anxaf_ xdxﬂ))

(XZ = xde)
Pl W p¥pi (33)

Wh.rn

Substituting for iQ from equation (24b), we get:-

N _
|q—-g(‘lq—xa010)
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Substituting from this last cquation into (24 L), we get:

X
\PQ = -;a-—( \Vq xaelo) + xOIQ
q
_Ta0 w yi (x ——;9-)1
= z § q Q 0 xq

(xQ xq = x;Q)
(xoxq - xéQ)

Multiplying out both sides of equation (24K) by Xaf /rr' we get:
Lastly substituting for iQ from equation (34) into (24m) we get the equality:

.“xaQ‘{J +x +——-p——(xQx —le) ‘I’Q =0 (38)

II. SOLUTION OF A MATRIX DIFFERENTIAL EQUATION:
To evaluate the solution of the equation:

pX =AX
The solution is generally given by:
_ A _ a-lU—A) A
X=e"X =e X, =e - X, (39)
where X, is the vector X att = 0, and A" = —A.

To calculate the transition matrix ¢ —t A’ the eigen values of the state matrix A’ are calculated. Let

hyeonn ‘15 - This, with the aid of sylvester: formula, the expansion of the exponential
functlon lS given by: ~ ‘

n
e-M=ZZ’=1 P(hy) Zy (A (40)
where
}? (A= 2_1)
#r
Z..(A) —--——____________
K e =13
K;ér J
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A

Pidg) = &8 (41b)
where }“K' }‘r arc the cigen values of A, K.r = 1, 2..... 15 and I is the unit matrix of order 15.
[nterpreting equation (40) for the 15th order state matrix A', we get:-
g s (A =20} . {A =Dl)
- o A=A
(R —=Xa) Ky ~Bsg) S B R
e~ Mt
+ :A’ — }\.| l}.
(A=A A= Ay)e(hy —Dys)
FB e BT o TP = Bl
e At
: G N T W | (42)

+
(Yis — M) o(Ays — Ayy)
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