Document Type : Review Paper

Authors

Department of Petroleum Technology, University of Technology, Baghdad-Iraq

Abstract

Petroleum is a vital source of energy for most human activities. The growth of the oil and gas sector is associated with releasing a significant amount of produced water (PW) from onshore and offshore fields. Thus, undesirable toxic pollutants in produced water have become a major concern for those concerned with environmental issues. Therefore, interest in recycling and beneficial reuse of pollutants has increased due to large amounts of PW. In general, various physical and chemical technologies and bio-treatments for PW or combined between them are applied. Bio-treatment is preferred due to its efficiency and eco-friendly compared with other PW treatments. To clarify the prospective role of PW bio-treatments, this review highlights the main bio-treatment technologies in aerobic and anaerobic conditions to reduce salinity, organic components, and toxicity from PW. Also, challenges of environmental factors for PW and future research directions are included. Activated sludge is an essential part of aerobic bio-treatments of polluted water as inoculum rich in microbial cells that can degrade pollutants. Membrane bioreactors (MBR), fluidized bed bioreactors (FBBs), aerated biological filter (BAF), and aeration lagoons are also reviewed. Moreover, bio-treatments are extended to include anaerobic conditions. Furthermore, bio-treatment techniques can treat organic compounds of wastewater, especially with low oil concentrations and poor solubility that cannot be treated with conventional treatments. 

Graphical Abstract

Highlights

  • It has become essential to develop an appropriate management strategy for PW treatment to avoid environmental impact.
  • Microbial biodegradation is known to be effective bioremediation for the disposal of various types of compounds, such as organic in PW
  • Aerobic treatment is fast and efficient for the elimination of degradable pollutants.
  • Anaerobic treatment is a preferential treatment used to provide clean energy from organic waste

Keywords

Main Subjects

References
[1]   H. H. Al-Kayiem and S. T. Mohammad, Potential of renewable energy resources with an emphasis on solar power in Iraq: An Outlook . Resources., 8 (2019) 42. https://doi.org/10.3390/resources8010042.
[2]  M. S. Kuyukina, A. V. Krivoruchko, and I. B. Ivshin, Review Advanced Bioreactor Treatments of Hydrocarbon-Containing Wastewater. Appl., Sci.10 (2020) 831. doi:10.3390/app10030831.
[3]  S. Jamaly, A. Giwa, and S. W. Hasan, Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities. J. Environ. Sci., 37 (2015)15–30. http://dx.doi.org/10.1016/j.jes.2015.04.011
[4] A. Oghenerobor,  D. A.  Otohinoyi, T. D. Olaolu, and  J. B. I Aderiye, pollutants in wastewater effluents: Impacts and remediation processes.  IJREES., 3 (2014) 050-059. https://eprints.lmu.edu.ng/id/eprint/1023.
[5] F. Al‑Zuhairi,  L.  Micoli,  C. Florio,  A.  Ausiello,  M.  Turco,  D.  Pirozzi, and  G.  Toscano, Anaerobic co‑digestion of municipal solid wastes with giant reed under mesophilic conditions. J. Mater. Cycles Waste Manag., 21 (2019)1332–1340. https://doi.org/10.1007/s10163-019-00886-6.
[6]   A. Fakhru’l-Razi, A. Pendashteh, L. C.  Abdullah, D. R. A. Biak, S. S. Madaeni, and  Z. Z. Abidin, Review of technologies for oil and gas produced water treatment. J. Hazard. Mater., 170 (2009) 530–551. doi: 10.1016/j.jhazmat.2009.05.044.
[7]  J. Pichtel, Oil and Gas Production Wastewater: Soil Contamination and Pollution Prevention. Appl Environ Soil Sci. 2016. https://doi.org/10.1155/2016/2707989.
[8]  Y. Xiao, S. Xu, Z. Li, X. An, L. Zhou, Y. Zhang, and F. Q. Shiang, Progress of applied research on TiO2 photocatalysis-membrane separation coupling technology in water and wastewater treatments. Chin. Sci. Bull., 55 (2010) 1345–1353. https://doi.org/10.1007/s11434-010-0171-x.
[9]  E.H. Khader, T. J. Mohammed, N.  Mirghaffari,  A. D. Salman, T. Juzsakova, and T. A. Abdullah, Removal of organic pollutants from produced water by batch adsorption treatment. Clean Technol Environ Policy., (2021). https://doi.org/10.1007/s10098-021-02159-z .
[10] T. Zsirai, A. K. Al-Jaml, H. Qiblawey, M. Al-Marri, A. Ahmed, S. Bach, S.Watson, and S. Judd, Ceramic membrane filtration of produced water: Impact of membrane module. Sep. Purif. Technol. 165 (2016) 214-221. https://doi.org/10.1016/j.seppur.2016.04.001.
[11] N. Abdel-Raouf, A. A. Al-Homaidan, and  I. B. M. Ibraheem, Microalgae and wastewater treatment”. Saudi J. Biol. Sci.,19 (32012) 257-275. https://doi.org/10.1016/j.sjbs.2012.04.005.
[12] I. A.  Katsoyiannis,  and  A. I. Zouboulis,  Application of biological processes for the removal of arsenic from groundwaters.  Water Res. 38 (2004) 17–26. https ://doi.org/10.1016/j.watre s.2003.09.011.
[13] L. Yu, M. Han and  F. He, A  review of treating oily wastewater. Arab. J. Chem.,10 (2017) S1913–S1922. https ://doi.org/10.1016/j.arabj c.2013.07.020.
[14] S. Jimenez, M. Micó, M. Arnaldos, F. Medina, and S. Contreras, State of the art of produced water treatment. Chemosphere.,192 (2018) 186-208. doi: 10.1016/j.chemosphere.2017.10.139.
[15] J.  Neff, K. Lee, E. M. DeBlois (2011) , Produced Water: Overview of Composition, Fates, and Effects.  In: Lee K., Neff J. (eds) Produced Water. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0046-2_1.
[16] E.T. Igunnu, and G.Z. Chen,  Produced water treatment technologies. Int. J. Low Carbon Techno, l.9 (2014) 157-177. https://doi.org/10.1093/ijlct/cts049.
[17] P. Ekins, R. Vanner, J. Firebrace, Zero emissions of oil in water from offshore oil and gas installations:        economic and environmental implications, J. Clean. Prod.,15)2007) 1302–1315. doi:10.1016/j.jclepro.2006.07.014.
[18] A. A. Olajire, Recent advances on the treatment technology of oil and gas produced water for sustainable energy industry-mechanistic aspects and process chemistry perspectives. J. Adv. Chem. Eng., 4 (2020) 100049. https://doi.org/10.1016/j.ceja.2020.100049.
[19] M. S. H. Bader,” Seawater versus produced water in oil-fields water injection operations.  Desalination, 208 (2007) 159-68.doi:10.1016/j.desal.2006.05.024.
[20] F. K. Al-Zuhairi, R. A. Azeez, S. A. Mahdi, W. A. Kadhim, M. Kh. Al-Naamee, Removal oil from produced water by using adsorption method with adsorbent a Papyrus reeds. J. Eng. Technol., 37 (2019) 157-165
[21] A.  Muggeridge, A.  Cockin, K. Webb, H. Frampton, I. Collins, T. Moulds, and P. Salino, Recovery rates, enhanced oil recovery and technological limits.  Philos. Trans. Royal Soc., A372 (2014).doi: 10.1098/rsta.2012.0320.
[22] T. Bakke, J. Klungsøyr, and S. Sanni,  Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Mar. Environ. Res., 92(2013)154-169.
[23] Y. Hedar, Pollution Impact and Alternative Treatment for Produced Water. EDP Sciences, 31(2018) 03004. https://doi.org/10.1051/e3sconf/20183103004.
[24] A.  Altowilib, A. AlSaihati, H. Alhamood, S. Alafnan and S. Alarifi, Reserves Estimation for Coal bed Methane Reservoirs: A Review. Sustainability., 12 (2020) 10621.doi:10.3390/su122410621.
[25] M.  Dudek, E.  Kancir, and G. Øye, Influence of the Crude Oil and Water Compositions on the Quality of Synthetic Produced Water. Energy Fuels., 31 (2017) 3708–3716. https://doi.org/10.1021/acs.energyfuels.6b03297.
[26] I. Toril, R. Utvik,  Chemical characterization of produced water from four offshore oil production platforms in the North Sea. Chemosphere., 39 (1999) 2593-2606. https://doi.org/10.1016/S0045-6535(99)00171-X..
[27] L-G. Faksness, P. G. Grini, P. S. Daling, Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water. Mar. Pollut. Bull., 48 (2004) 731–742. doi: 10.1016/j.marpolbul.2003.10.018.
[28] M.  Eljaiek-Urzola, N. Romero-Sierra, L. Segrera-Cabarcas, D. Valdelamar-Martínez, and É,.Quiñones-Bolaños,  Oil and Grease as a Water Quality Index Parameter for the Conservation of Marine Biota. Water., 11 (2019) 856. doi:10.3390/w11040856.
[29] B. Alley,  A. Beebe,  J. R. Jr, and J. W. Castle, Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources. Chemosphere., 85 (2011) 74-82. doi:10.1016/j.chemosphere.2011.05.043.
[30] A. R. Pendashteh, N. Chaibakhsh, and F-R. Ahmadun, Biological  treatment of high salinity produced water by microbial consortia in a batch stirred tank reactor: Modelling and kinetics study . Chem Eng Commun.  205 (2018) 387-401. https://doi.org/10.1080/00986445.2017.1398742.
[31] B. M. Johnson, L. E. Kanagy, J. H. R. Jr, and  J.W. Castle, Chemical, physical, and risk characterization natural gas storage produced waters. Water Air Soil Pollut. , 191 ( 2008 ) 33-54. doi:10.1007/s11270-0079605-8.
[32] United States Environmental Protection Agency (USEPA). EPA Office of Compliance Sector Notebook Project: Profile of the Oil and Gas Extraction Industry. EPA/310-R-99-006, 2000.
[33] J. P. Fillo, J. M. Evans, Characterization and management of produced waters from underground natural gas storage reservoirs. Am. Gas Assoc. Oper. Sect., (1990) 448–459.
[34] D. E. Freedom, S. Riley,Z. Jones, J. S. Rosenblum, J. O. Sharp, J. R. Spear, and  T. Cath, Biologically active filteration for fracturing flowback and water treatment. J. Water Process. Eng., 18 (2017) 29-40. doi:10.1016/j.jwpe.2017.05.008.
[35] B. Kose, H. Ozgun, M. E. Ersahin, N. Dizge, D.Y.Koseoglu-Imer, B. Atay, R. Kaya, M. Altınbas, S. Sayili, P. Hoshan, C. Kinaci, and I. Koyuncu, Performance evaluation of submerged membrane bioreactor for the treatmenr of brackish oil and natural gas field produced water. Desalination., 285 (2012) 295-300. https://doi.org/10.1016/j.desal.2011.10.016.
[36] [36]  K. Tong, Y. Zhang, G. Liu,  Z.  Ye, P. K. Chu, Treatment of heavy oil wastewater by a conventional activated sludge process coupled with an immobilizied biological filter.  Int. Biodeterior. Biodegradation., 84 (2013) 65-71. http://dx.doi.org/10.1016/j.ibiod.2013.06.002.
[37]  Z. Dong, M. Lu, W. Huang,  and X. Xu, treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier. J. Hazard. Mater., 196 (2011) 123-130. https://doi.org/10.1016/j.jhazmat.2011.09.001.
[38]  A. Z. Rodriguez, H. Wang, L. Hu, Y.  Zhang, and P. Xu, Treatment of Produced Water in the Permian Basin for Hydraulic Fracturing: Comparison of Different Coagulation Processes and Innovative Filter Media.Water., 12 (2020) 770. doi:10.3390/w12030770.
[39]  A.  Fakhru'l-RaziA. PendashtehZ. Z. AbidinL. C.AbdullahD. R.H A. Biak, and  S. Si.h Madaeni, Application of Membrane-Coupled Sequencing batch reactor for oilfield produced water recycle and beneficial reuse. Bioresour. Technol.,101 (2010) 6942-6949. doi: 10.1016/j.biortech.2010.04.005 .
[40] Database, U.P.W., 2002. USGS Produced Waters Database. U.S. Department of the Interior.
[41] N. Lusinier, I. Seyssiecq, C. Sambusiti, M. Jacod, N. Lesage and N. Roche, Biological treatments of oilfield produced water: Acomprehensive Review. Soc. Pet. Eng.,  24 (2019): 2135–2147.24 (2019): 2135–2147.24 (2019) 2135-2147. doi: 10.2118/195677-PA.
[42] R. Dores, A. Hussain, M. Katebah, S. Adham, Using advanced water treatment technologies to treat produced water from the petroleum industry. Society of Petroleum Engineers (SPE) International Production and Operations Conference and Exhibition. Doha, Qatar, 2012.
[43] USEPA, Development Document for Final Effluent Limitations Guidelines and Standards for the Coastal Subcategory of the Oil and Gas Extraction Point Source Category. EPA Number: 821R96023.1996.
[44] C. Brown, and M. Sheedy, A New Ion Exchange Process For Softening High TDS Produced Water. Paper presented at the SPE International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference, Calgary, Alberta, Canada, SPE-78941-MS,2002.  https://doi.org/10.2118/78941-MS.
[45] N.A. Al-Rubaiey and M.G. Albarazanjy, Ultrasonic Technique in Treating Wastewater by Electrocoagulation. J. Eng. Technol, 36C (2018) 54-62. doi:http://dx.doi.org/10.30684/etj.36.1C.9.
[46] B. Y. Sherhan, A. D. Abbas, Q. F. Alsalhy, T. K. Abbas, Y. M. Mahdi, N. A. Abdul Kareem, A. A. Rashad, Z. W. Rashad and A. A. Shawkat, Produced Water Treatment Using Ultrafiltration and Nanofiltration Membranes.  Al-Khawarizmi eng. J., 12(2016) 10-18.
[47] B. Liu, B. Chen, and  B. Zhang,  Oily Wastewater Treatment by Nano-TiO2-Induced Photocatalysis Seeking more efficient and feasible solutions. IEEE Nanotechnol. Mag., 11 (2017) 4-15. doi:10.1109/MNANO.2017.2708818.
[48] Z.  Karm, A. D. Subhi, and R. S.  Hamied, Synthesis, characterization and application of gamma-alumina as adsorbent material to enhance iron removal from produced water. UPB Sci. Bull. B: Chem. Mater. Sci.,82 (2020) 237-246. ISSN 1454-2331.
[49] Z.  Karm, A. D. Subhi, and R. S. Hamied, Comparison Study of Produced Water Treatment Using Electrocoagulation and Adsorption. Rev. de Chim. 71 (2020) 22-2. https://doi.org/10.37358/RC.20.11.8370.
[50] M.G. Albarazanjy, Treatment of Wastewater from Oil Refinery by Adsorption on Fluidized Bed of Stem Date. J. Eng. Technol., 35A ( 2017)134-138.
[51] C. Grandclément, I, Seyssiecq, A. Piram, P. lWong-Wah-Chung, G. Vanot,  N.Tiliacos, N. Roche, and P. Doumenq, From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal :A review. Water Res., 111 (2017) 297-317. http://dx.doi.org/10.1016/j.watres.2017.01.005.
[52] R. A. Azeez,  A Study on The Effect Of Temperature on The Treatment of Industrial Wastewater Using Chlorella Vulgaris Alga. J. Eng. Technol.,28 (2010).
[53] M. K. Camarillo, and W. T. Stringfellow, Biological treatment of oil and gas  produced water: a review and meta‑analysis. Clean Technol Environ Policy., 20 (2018) 1127-1146.doi:10.1007/s10098-018-1564-9.
[54] L. Hallbeck, V. Vegrandis, M. Grivé, X. Gaona, L. Duro, J. Bruno, Main organic materials in a repository for high level radioactive waste (Report No.R--06-104). Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co. (Sweden) 2006. http://www.skb.se/upload/publications/pdf/R-06-104webb.pdf
[55] G.T. Tellez, N. Nirmalakhandan, and  J. L. Gardea-Torresdey, Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water. Adv. Environ. Res., 6 (2002) 455–470.  https://doi.org/10.1016/S1093-0191(01)00073-9.
[56] R. Boopathy, Anaerobic degradation of petroleum hydrocarbons in sediments.  Current developments in biotechnology and bioengineering, Elsevier. (2017) 475–490. https://doi.org/10.1016/B978-0-444-63664-5.00020-4.
[57] A. R. Pendashteh A. Fakhru'l-RaziT. G. ChuahA. B. D. RadiahS. S. Madaeni,  and Z. A. Zurina, Biological treatment of produced water in a sequencing batch reactor by a consortium of isolated halophilic microorganisms. Environ. Technol., 31 (2010) 1229–1239. https ://doi. org/10.1080/09593 33100 36466 12.
[58] E. Kardena, S.  Hidayat, S. Nora, and Q. Helmy, Biological treatment of synthetic oilfield-produced water in activated sludge using a consortium of endogenous bacteria isolated from a tropical area. J. pet. environ. Biotechnol., 8 (2017) 331-338. https ://doi.org/10.4172/2157- 7463.10003 31.
[59] D. D. C. Freire, M.C. Cammarota, and  G.L. Sant’Anna Jr, Biological treatment of oil field wastewater in a sequencing batch reactor. Environ. Technol., 22 (2001) 1125–1135. doi:10.1080/09593332208618203.
[60] N. Wei, X. Xiang-he, L. Feng-kai, Z Ying-jun, and G. Yi, Treatment of high-salt oil field produced water by composite microbial culture.  Urban Ecosyst.,16 (2003)10–12.
[61] M.P. Díaz, S. J. Grigson, C.J. Peppiat, and  J.G. Burgess, Isolation and characterization of novel hydrocarbon-degrading euryhaline consortia from crude oil and mangrove sediments.  Mar. Biotechnol.  York, 2 (2000) 522–532.
[62] C. R. Woolard, and R. L.  Irvine, Treatment of hypersaline waste-water in the sequencing batch reactor. Water Res., 29 (1995)1159–1168. https ://doi.org/10.1016/0043-1354(94)00239 -4.
[63] Y. Lester, I. Ferrer, E. M.  Thurman, K. A. Sitterley, J. A. Korak, G. Aiken, and K. G. Linden, Characterization of hydraulic fracturing flowback water in Colorado: implications for water treatment. Sci. Total Environ., 512-513 (2015) 637–644. https ://doi.org/10.1016/j.scito tenv.2015.01.043.
[64] P. Baldoni-Andrey, P. Pedemaud, P. Dehaene,  and B. Segues,Impact of high salinity of producedwater on the technical feasibility of biotreatment for E&P onshore applications. SPE International Health, Safety & Environment Conference, 2006. https://doi.org/10.2118/98751-MS .
[65] Pierre-Louis Dehaene Patrick Baldoni-Andrey TotalSearch for other works by this author on: This Site Google Scholar Pierre Pedenaud Total S.A.Search for other works by this author on: This Site Google Scholar TotalSearch for other works by this author on: P. Krzeminski, L. Everettle, S.  Malamis, and E. Katsou, Membrane bioreactor- a review on recent in energy reduction,
       
 
 
 
fouling control, novel configuration, LCA and Market prospects. J. Membr. Sci., 527 (2018) 207-227.      http://dx.doi.org/10.1016/j.memsci.2016.12.010.
[66] This Site Google Scholar S. J. Judd, The status of industrial and municipal effluent treatment with membrane bioreactor technology. Chem. Eng. ,J.305 (2016) 37-45. https://doi.org/10.1016/j.cej.2015.08.141.
[67]  A. Pandey, and R. K.Singh, Industrial Waste Water Treatment by Membrane Bioreactor System. Elixir Chem. Eng. 70 (2014) 23772-23777.
[68] E. A.  Sharghi,  B. Bonakdarpour, P. Roustazade,  M. A. Amoozegar , and A. R. Rabbani, The biological treatment of high salinity synthetic oilfield produced water in a submerged membrane bioreactor using a halophilic bacterial consortiu.  J. Chem. Technol. Biotechnol., 88 (2013) 2016–2026. https ://doi.org/10.1002/jctb.4061.
[69] A. Janson, A. Santos, M. Katebah, A. Hussain, J. Minier-Matar, S. Judd, and S. Adham, Assessing the biotreatability of produced water from a Qatari gas field. Soc. Pet. Eng. J., 20 (2015) 1113–1119. https://doi.org/10.2118/173188-PA.
[70] C. Cruz-Morató, L. Ferrando-Climent, S. Rodriguez-Mozaz, D. Barceló, E. Marco-Urrea, T. Vicent, and M. Sarrà, Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Res., 47 (2013) 5200–5210. doi: 10.1016/j.watres.2013.06.007.
[71] M. J. Nelson, G. Nakhla, and J. Zhu, Fluidized-bed bioreactor applications for biological  wastewater treatment A review of research and developments. Engr., 3 (2017)330–342. doi:10.1016/J.ENG.2017.03.021.
[72] M. S. Kuyukina, I. B. Ivshina,  M. K. Serebrennikova, A. B. Krivorutchko, E. A. Podorozhko, R. V. Ivanov, and V.  I. Lozinsky, Petroleum-contaminated water treatment in a fluidized-bed bioreactor with immobilized Rhodococcus cells. Int. Biodeterior. Biodegradation., 63 (2009) 427-432. doi: 10.1016/j.ibiod.2008.12.001.
[73] [73] M. S.  Kuyukina, I. B. Ivshina, M. K. Serebrennikova, A. V. Krivoruchko, I. O. Korshunova, T. A.  Peshkur, and   C. J. Cunningham, Oilfield wastewater biotreatment in a fluidized-bed bioreactor using co-immobilized Rhodococcus cultures. J. Environ. Chem. Eng., 5 (2017) 1252-1260. doi: 10.1016/j.jece.2017.01.043.
[74] M. K. Serebrennikova, E. E. Golovina, M. S. Kuyukina, and I. B. A. Ivshina, A consortium of immobilized rhodococci for oilfield wastewater treatment in a column bioreactor. Appl. Biochem. Microbiol., 53 (2017) 435–440.
[75] Y. Zhengfang, and N.  Jinren, Performance comparison between the immobilized and the dissociated microorganisms in wastewater treatment.  J. Basic Sci. Eng., 10 (2002) 325–32.
[76] X.  Zhao, Y. Wang, Z. Ye, A. G.L. Borthwick, and J. Ni, Oil field wastewater treatment in Biological Aerated Filter by immobilized microorganisms. Process Biochem., 41 (2006)1475–1483. https://doi.org/10.1016/j.procbio.2006.02.006.
[77] S. M. Riley, J. M. S. Olivera, J. Regency, and  T. Y. Cath, Hybrid membrane bio- system for sustainable treatment of oil and gas produced water and fracturing flowback water. Sep. Purif. Technol.. 171 (2016 ) 297-311. doi:10.1016/j.seppur.2016.07.008.
[78] Gray N. F. (2005). Water Technology: An Introduction for Environmental Scientists and Engineers, Butterworth-Heinemann, Oxford, UK,2005. https://doi.org/10.1016/B978-075066633-6/50008-0.
[79] C.  Peitz  and C. R.  Xavier, Evaluation of aerated lagoon modified with spongy support medium treating Kraft pulp mill effluent. Rev. Fac. Ing. Univ. Antioq. 92 (2019)70-79. doi:10.17533/udea.redin.20190725.
[80] R A. Azeez , and  F. K. Al-Zuhairi, Biofuels (Bioethanol, Biodiesel,and Biogas) from Lignocellulosic Biomass :A Review. J. Univ. Babylon eng. sci., 28 (2020) 202-215. https://www.journalofbabylon.com/index.php/JUBES/article/view/2948
[81] M. Ghorbanian, G. Moussavi, and M. Farzadkia, Investigating the performance of an up-flow anoxic fixed-bed bioreactor and a sequencing anoxic batch reactor for the biodegradation of hydrocarbons in petroleum-contaminated saline water. Int. Biodeterior. Biodegradation., 90 (2014)106-114. https ://doi.org/10.1016/j.ibiod.2014.02.009.
[82] F.  Al-Zuahiri, D.  Pirozzi, A.  Ausiello, C. Florio, M.  Turco, L. Micoli, G. Zuccaro, and  G. Toscano, Biogas    Production from Solid State Anaerobic Digestion for Municipal Solid Waste. Chem. Eng. Trans., 43 (2015)2407-2412. doi: 10.3303/CET1543402.
[83] K. F. Adekunle, and J.A. Okolie, A Review of Biochemical Process of Anaerobic Digestion Adv. Biosci. Biotechnol. 6 (2015) 205-212. http://dx.doi.org/10.4236/abb.2015.63020.
[84] Y. Xiao, and D. J. Roberts, A review of anaerobic treatment of saline wastewater.  Environ. Technol., 31 (2010) 1025–1043. https ://doi.org/10.1080/09593 33100 3734202.
[85] P.L. McCarty, Anaerobic Waste Treatment Fundamentals, Public Works 95,9,107-112,1964.
[86] M. Lu, Z. Zhang, W. Yu and W. Zhu, Biological treatment of oilfield-produced water: A field pilot study. Int. Biodeterior. Biodegradation. 63 (2009) 316-321. https://doi.org/10.1016/j.ibiod.2008.09.009.
[87] Y. Chen J.  J.  Cheng,  and  K. S. Creamer, Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 99(2008) 4044-4064. doi: 10.1016/j.biortech.2007.01.057.
[88] F. C. Khong, M.H. Isa, S. R. M. Kutty, and S. A.  Farhan, Anaerobic treatment of produced water. World Acad. Sci. Eng. Technol., 62 (2012)55–59.
[89] L. G. Hua, Y. Z. Fang, T. Kun,  and Z. Y. He, Biotreatment of heavy oil wastewater by combined upflow anaerobic sludge blanket and immobilized biological aerated filter in a pilot-scale test. Biochem. Eng. J.,72 (2013) 48-53. https://doi.org/10.1016/j.bej.2012.12.017.
[90] G. D. Ji, T. H. Sun, J. R. Ni, and J. J. Tong, Anaerobic baffled reactor (ABR) for treating heavy oil produced water with high concentrations of salt and poor nutrient. Bioresour. Technol., 100 (2009)1108–1114. https ://doi.org/10.1016/j.biort ech.2008.08.015.
[91] R. Iglesias, R. Muñoz, M.  Polanco, I. Díaz, A. Susmozas, A. D. Moreno, M. Guirado, N. Carreras, M. Ballesteros, Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development. Energies, 14 (2021) 2742.
[92] T. S. Tshikantwa, M. W. Ullah, F. He, and G. Yang, Current Trends and Potential Applications of Microbial Interactions for Human Welfare.  Front. Microbiol.,  9 (2018)1156.  doi: 10.3389/fmicb.2018.01156.
[93] K. M. Shabeeb, K. A. Sukkar, R. A. Azeez, N. J. Salah, M. A. Yousif, N. Manoual and A. Samir, A New development in biological process for wastewater treatment to produce renewable fuel. Am. J. Appl. Sci, 7 (2010) 1400-1405. DOI: 10.3844/ajassp.2010.1400.1405.
[94] D.  Bolzonella, P. Pavan, P. Battistoni, F. Cecchi, Mesophilic anaerobic digestion of waste activated sludge: Influence of the solid retention time in the wastewater treatment process. Process Biochem., 40 (2005)1453-1460. doi:10.1016/j.procbio.2004.06.036.
[95] M. Cirja, P. Ivashechkin, Andreas Schaeffer, and  Philippe F X Corvini, Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). Rev. Environ. Sci. Biotechnol. 7 (2007) 61-78. doi: 10.1007/s11157-007-9121-8.
[96] F. K. Al-Zuhairi, and R. A. Azeez, Augmentation of biomethane production from potato peels waste by co-digestion with sheep manure. 2nd International Conference on Materials Engineering & Science, AIP Conf. Proc, 2213,2020, 020048. https://doi.org/10.1063/5.0000237.
[97] S. Ai, S. Dong, Z.  Nie, S. Zhu, Q. Ren, and D. Bian, Study on Aeration Optimization and Sewage Treatment Efficiency of a Novel Micro-Pressure Swirl Reactor (MPSR). Water., 12 (2020)890. doi:10.3390/w12030890.
[98] J. K. Otton, Environmental Aspects of Produced-water Salt Releases in Onshore and Coastal Petroleum-producing Areas of the Conterminous U.S. - a bibliography. Open-File Report, (2006). https://doi.org/10.3133/ofr20061154.
[99] A. R. Pendashteh, L. C.A bdullah, A. Fakhru’l-Razi, S. S. Madaeni, Z. Z. Abidin, and D. R. A. Biak, Evaluation of membrane bioreactor for hypersaline oily wastewater treatment. Process Saf. Environ. Prot., 90 (2012) 45–55. https://doi.org/10.1016/j.psep.2011.07.006.
[100] D. Kekacs,  B. D. Drollette, M. Brooker, D. L. Plata, and P. J.  Mouser,  Aerobic biodegradation of organic compounds in hydraulic fracturing fluids. Biodegradation., 26 (2015) 271–287. https://doi.org/10.1007/s10532-015-9733-6.
[101] A. SzajaA. Montusiewicz Magdalena Lebiocka, and Marta Bis, A combined anaerobic digestion system for energetic brewery spent grain application in co-digestion with a sewage sludge .Waste Manage., 135 (2021)  448-456. doi: 10.1016/j.wasman.2021.09.034.
[102] Y. V. Nancharaiah, M. Sarvajith, and T. V. Krishna Mohan, Aerobic granular sludge: the future of wastewater treatment. Curr. Sci., 117 (2019) 395-404. DOI: 10.18520/cs/v117/i3/395-404.
[103] J. Wanner, The development in biological wastewater treatment over the last 50 years. Water Sci. Technol., (2021) 84 (2021)  274–283Jiří Wanner 1Department of Water Technology and Environmental Engineering, University of Chemistry and Technology, Prague Technicka 5, CZ-166 28 Praha 6, Prague, Czech RepublicE-mail: jiri.wanner@vscht.cz . https://doi.org/10.2166/wst.2021.095.
[104] S. Al-Asheh, M. Bagheri. and A. Aidan,Membrane bioreactor for wastewater treatment: A review. CSCEE. 4 (2021)100109. https://doi.org/10.1016/j.cscee.2021.100109.
[105] A. R. M. A. El-Aziz, M. R. Al-Othman, S. M. Hisham, and S. M. Shehata,Evaluation of crude oil biodegradation using mixed fungal cultures. PLoS one., 16 (2021) e0256376. https://doi.org/10.1371/journal.pone.0256376.
[106] E. Fragkou, E. Antoniou, I. Daliakopoulos, and T. Manios, Theodorakopoulou, M.; Kalogerakis, N. In Situ Aerobic Bioremediation of Sediments Polluted with Petroleum Hydrocarbons: A Critical Review.  J. Mar. Sci. Eng., 9 (2021) 1003. https://doi.org/10.3390/jmse9091003.
[107] A. I. Adetunji, and A. O. Olaniran,” Treatment of industrial oily wastewater by advanced technologies: a review”. Appl. Water Sci., 11 (2021). https://doi.org/10.1007/s13201-021-01430-4.
[108] Z. Wang, S. Ishii and  P. J. Novak, Encapsulating microorganisms to enhance biological nitrogen removal in wastewater: recent advancements and future opportunities. Environ. Sci. Water Res. Technol., 7 (2021) 1402-1416.
[109] R. A. Azeez, and F. K. I. Al-Zuhairi, Biosorption of dye by immobilized yeast cells on the surface of magnetic nanoparticles.  Alex. Eng. J., 61 (2022) 5213–5222. https://doi.org/10.1016/j.aej.2021.10.044, 2021.