Document Type : Research Paper


1 Materials Engineering Department, University of Technology , Baghdad, Iraq.

2 Department of Materials engineering, University of technology, baghdad, Iraq

3 Department of Materials Engineering, University of Technology, Baghdad, Iraq

4 University of Mustansiriyah, Iraqi Center for Cancer and Medical Genetic Research, Baghdad Iraq


The study investigates the effect of polycaprolactone (PCL) concentration on the metformin hydrochloride (MH) release ratio of electrospun nanofiber scaffolds. Blend and emulsion electrospinning are used to produce the scaffolds. The performance of nanofibrous scaffolds was evaluated by morphology (Field Emission Scanning Electron Microscopy, FESEM), chemical (Fourier Transform Infrared Spectroscopy, FTIR), thermal (Differential Scanning Calorimetry, DSC), wettability, porosity, mechanical tests, and in vitro drug release. The average fiber diameter ranged from (189.29-2893.93 nm) according to the FESEM results, and it increased with PCL concentration. The average fiber diameter of the electrospun scaffold, prepared by the blend method (259.64±6.1 nm), is lower than that of the electrospun scaffold produced by the emulsion method (487.45±22.53 nm). Melting points of all drug-loaded scaffolds were identical to those of pure PCL polymer. Compared with blend electrospun nanofibers, emulsion electrospun nanofibers showed a marked increase in hydrophilicity. The tensile strength indicated an improvement in the mechanical properties with a decrease in the average fiber diameter. Moreover, the results show that the release of Metformin hydrochloride decreases with the concentration of polycaprolactone. Total MH release from (5% w/v) PCL-MH fibrous scaffolds for three-week was 71.11 % and 93.91 % from the emulsion and blend methods, respectively. The drug release ratio is lower in emulsion electrospinning than in blend because the drug is encapsulated by polymer and surfactant, which improves control and long-term drug delivery system DDS.

Graphical Abstract


  • Metformin Hydrochloride-Polycaprolactone (MH-PCL) nanofiber mats were synthesized using blend and emulsion electrospinning techniques.
  • The MH drug release decreases with PCL concentration.
  •  The hydrophilic drug was encapsulated within the fiber core structure by the emulsion electrospinning technique.
  • The drug-loaded electrospun scaffolds treat chronic diseases through controlled and long-term drug release.


Main Subjects

[1] X. Feng, L. Jiannan,  X. Zhang, T. Liu, J. Ding, X. Chen, Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. J. Controlled Release, 302 (2019) 19-41. doi:  10.1016/j.jconrel.2019.03.020
[2] L. Shang; Y. Yu, Y. Liu, Z. Chen, T. Kong, Y. Zhao, Spinning and Applications of Bioinspired Fiber Systems,  J.ACS Nano. 13 ( 2019) 2749–2772. doi: 10.1021/acsnano.8b09651
[3] S. Kajdič, O. Planinšek, M. Gašperlin, P. Kocbek, Electrospun nanofibers for customized drug-delivery systems. J. Drug Delivery Science and Technology., 51(2019) 672–681. doi: 10.1016/j.jddst.2019.03.038
[4] A. R. Jabur , Multiwall Carbon Nanotube / Polyvinyl Alcohol Nanofibers Film, Electrical Conductivity Improvement. Eng. and Tech J., 38 (2020) 430-438. DOI:
[5] C. E. Ayres, B. S.r Jha, S. A. Sell, G. L. Bowlin, and D. G. Simpson, Nanotechnology in the design of soft tissue scaffolds: innovations in structure and function. Wiley & Sons, Inc. J., 2 (2010) 20–24. doi: 10.1002/wnan.55
[6] S. A. Moosa, A. R. Jabur, E. S. Al- Hassani, Preparation and Physical Properties of PCL-Metoprolol Tartrate Electrospun Nanofibers as Drug Delivery System. Key Eng. Mater. J., 886 (2021)183-188. doi:  10.4028/
[7] Y. Yang, X. H. Li, M. B. Qi, S. B. Zhou,  J. Weng, Release pattern and structural integrity of lysozyme encapsulated in core-sheath structured poly(DL-lactide) ultrafine fibers prepared by emulsion electrospinning.   Eur J Pharm Biopharm., 69 (2008)106–116. doi:  10.1016/j.ejpb.2007.10.016
[8] A. R. Jabur, L. K. Abbas,  S. M. Muhi Aldain, Effects of Ambient Temperature and Needle to Collector Distance on PVA Nanofibers Diameter Obtained From Electrospinning Technique. Eng. and Tech. J., 35(2017) 340-347.
[9] J. Hu, M. P. Prabhakaran, X. Ding, S. Ramakrishna, emulsion electrospinning of polycaprolactone: influence of the surfactant type towards the scaffolds properties. J Biomater Sci Polym Ed., 26 (2014) 57-75. doi: 10.1080/09205063.2014.982241
[10] D. Narasimha rao, M. Prasada rao, J. Naga Hussain, S. Lakshmi Sumanoja , V. Rajeswara rao, Method development and validation of forced degradation studies of metformin hydrochloride by using UV spectroscopy. IJPCBS J., 35 (2013) 46-553.
[11] H.  Ruchi Majithia, Dr. Akruti Khodadiya, and  B.Vaibhav Patel, Spectrophotometric method development and validation for simultaneous estimation of Anagliptin and Metformin HCl BY Q - Absorption ratio method in synthetic mixture. Heliyon Journal, 6 (2020) 1-7. doi: 10.1016/j.heliyon.2020.e03855
[12] J. Hu, M. P. Prabhakaran, X. Ding, S. Ramakrishna, Emulsion electrospinning of polycaprolactone: influence of surfactant type towards the scaffold properties,  Biomater. Sci., Polym. Ed. J., 26 (2014) 57–75. doi: 10.1080/09205063.2014.982241
[13] Pezeshki-Modaress, M., Zandi, M. & Rajabi, S. Tailoring the gelatin/chitosan electrospun scaffold for application in skin tissue engineering: an in vitro study. Prog Biomater., 7 (2018)207–218. doi: 10.1007/s40204-018-0094-1
[14] J. Hu, M. P. Prabhakaran, L. T., X. Ding, S. Ramakrishna, Drug-loaded emulsion electrospun Nanofibers: characterization, drug release and in vitro biocompatibility. RSC Adv. J., 5 (2015) 100256–100267. doi: 10.1039/C5RA18535A
[15] M. Alves da Silva, A. Crawford, J. Mundy, A. Martins, J. V. Arau' jo, P. V. Hatton, R. L. Reis, N. M. Neves, Evaluation of extracellular matrix formation in polycaprolactone and starch- compounded polycaprolactone nanofiber meshes when seeded with bovine articular chondrocytes. Tissue Engineering: Part A J., 14 (2008) 1-9. doi: 10.1089/ten.tea.2007.0327
[16] L. Du, H. Xu, Y. Zhang, F. Zou, Electrospinning of Polycaprolactone Nano-fibers with DMF Additive: The Effect of Solvent Proprieties on Jet Perturbation and Fiber Morphologies. Fibers Polym. J., 17(  2016) 751-759. doi: 10.1007/s12221-016-6045-3
[17] A. R. Jabur, L. K. Abbas, S. A. Moosa, Fabrication of Electrospun Chitosan/Nylon 6 Nanofibrous Membrane toward Metal Ions Removal and Antibacterial Effect. Advances in Materials Science and Engineering, Hindawi Publishing Corporation., 2016 (2016 ) 0-10. doi: 10.1155/2016/5810216
[18] N. Kulpreechanan, T. Bunaprasert, R. Rangkupan, Electrospinning of Polycaprolactone in Dichloromethane/ Dimethylformamide Solvent System. Advanced Materials Research J.,  849 (2014 ) 337-342. doi: 10.4028/
[19] X.Qin,  D. Wu, Effect of different solvents on poly(caprolactone) (PCL) electrospun nonwoven membranes. J Therm Anal Calorim., 107 (2012)1007–1013. doi: 10.1007/s10973-011-1640-4
[20] S. Gunasekaran , R. K.  Natarajan, V Renganayaki, S. Natarajan, Vibrational spectra and thermodynamic analysis of metformin. India J. of pure and applied physics, 44(2006) 495-600.
[21] V. Milleret, Th. Hefti, H. Hall, V. Vogel, D. Eberli, Influence of fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Acta Biomaterialia., 8 (2012) 4349-4356. doi: 10.1016/j.actbio.2012.07.032
[22] X. Q. Li, Y. Su, X. Zhou ,  X. M. Mo, Distribution of sorbitan monooleate in poly( 1-lactide –co-e-caprolactone) nanofibers from emulsion electrospinning. Colloids Surf. B: Biointerfaces J. 69(2009) 221–224. doi: 10.1016/j.colsurfb.2008.11.031
[23] Shing- Chung Wong, Avinash Baji, Siwei Leng, Effect of fiber diameter on the tensile properties of electrospun poly (ε- caprolactone). Polymer J., 49 (2008) 4713-4722. doi: 10.1016/j.polymer.2008.08.022
[24] Y. Ankamma Chowdary, R. Raparla, M. Madhuri , Formulation and Evaluation of Multilayered Tablets of Pioglitazone Hydrochloride and Metformin Hydrochloride, Hindawi Publishing Corporation Journal of Pharmaceutics., 2014( 2014) 1-14. doi: 10.1155/2014/848243
[25] E.R. Kenawy, F. I. Abdel-Hay, M. H. El-Newehy, G. E. Wnek, Processing of polymer Nanofibers through electrospinning as drug delivery systems. Mater. Chem. Phys . J. 113 (2009) 296–302. doi: 10.1007/978-1-4020-9491-0_19
[26] A. Szentivanyi, T. Chakradeo, H. Zernetsch , B. Glasmacher, Electrospun cellular microenvironments: Understanding controlled release and scaffold structure. Adv. Drug Deliv Rev. J., 63 (2011) 209–220. doi: 10.1016/j.addr.2010.12.002
[27] J. Lee, J. J. Yoo, A. Atala, S. J. Lee, The effect of controlled release of PDGF-BB from heparin-conjugated electrospun PCL/gelatin scaffolds on cellular bioactivity and infiltration. Biomaterials J., 33 (2012) 6709-6720. doi: 10.1016/j.biomaterials.2012.06.017