Khitam S. Shaker Synthesis and Characterization Nano Structure Nano Technology and of MnO₂ via Chemical Method advanced material Research center, University of Technology Baghdad, Abstract-In the current research, Magnesium oxide II (MnO_2) nanostructures Iraq. were prepared by chemical route from hydro manganese chloride salt using khitamsalim@yahoo.com Potassium hydroxide as reducing agent. X-Ray diffraction (XRD), SEM and Fourier transformation infrared (FTIR) used to characterize both particle size Alyaa H. AbdAlsalm and structure of MnO₂ nanoparticles. XRD results confirmed impurity of Nano Technology and synthesized powder with α -MnO₂ as predominant phase. The average particle advanced material size of manganese dioxide was in the range 25-30 nm. Photographs of scanning Research center, University electron microscope (SEM) showed two hierarchical structures, cluster of Technology Baghdad, agglomeration and chain appearance. Iraq. *Keywords*- *MnO*₂ *Nanostructure, Characterization and precipitation method* Received on: 20/10/2016 Accepted on: 11/01/2018 Published online: 25/09/2018

How to cite this article: Kh.S. Shaker and A.H. AbdAlsalm "Synthesis and Characterization Nano Structure of MnO₂ via Chemical Method," *Engineering and Technology Journal*, Vol. 36, Part A, No. 9, pp. 946-950, 2018.

1. Introduction

Manganese is a transitional element existing in three various valence states and its oxides considered highly complex [1]. Manganese oxide II is a complex, an inorganic, blackish or brown color compound exists in nature as ore of manganese called pyrolusite [2]. Manganese oxides, including MnO, MnO₂, and Mn₃O₄, are interesting composites used in wide range of applications in treatment of wastewater, catalyst, biosensors, supercapacitors, and batteries due to their distinctive physical and chemical properties and [3-7]. Figure 1 shows diagram of MnO₂ structure forms at which, each structure form preferred specific properties than the others [8].So far, multiple efforts dedicated to prepare MnO₂ using various strategies including thermal decomposition, co-precipitation, sol-gel, simple reduction, solid-phase process, hydrothermal method and microwave process ... etc [9-14]. Most of researches attracted to use hydrothermal and sol gel processes because the shape of materials that can be easily controlled, while others preferred precipitation method since it offers simplicity, low cost, quick preparative method, finally easily controlled of both particle size and composition [15]. Singh et al. synthesized firstly manganese oxyhydroxide γ -MnOOH nanowires via hydrothermal route and transferred into β -MnO₂ by calcination at 300°C [16]. Figure 2 indicate to manganese oxides transformations under different conditions [17]. Feng et al. used hydrothermal route to produce two forms of α-MnO₂ crystals urchin-like under

acidic circumstances and is caddice-clew-like under neutral [18]. Zadeh et al. prepared successfully MnO₂ by hydrothermal and sol-gel routs. Results indicated that each of α -MnO₂, β -MnO₂, and δ -MnO₂ nanorods synthesized by hydrothermal route while γ -MnO₂ by sol-gel route [8]. Kumar et al. and Balamurugan synthesized nano crystalline with tetragonal structure manganese oxide nanoparticles by co precipitation using two different anions salts (i.e. sulphate monohydrate and Oxalate) [15,19]. Wu et al. studied concluded that different forms of MnO₂ nanostructures can be synthesized via hydrothermal such as *alpha*-MnO₂ with different shapes like nanorods, nanotubes, nanocubes, nanowires and beta-MnO₂ cylinder/spindle-like nanosticks by changing the weight ratio of Mn precursor solution respect to HCl, Mn(Ac)₂·4H₂O or $C_6H_{12}O_6 \cdot H_2O$, types of surfactants, finally temperature and time of reaction [20]. Finally, Adelkhani succeeded in synthesis novel electro active nano structure manganese dioxide via pulse laser deposition [1]. In the present work, nanostructure MnO₂ synthesized by precipitation method has been reported using single manganese anion salt. Structural and crystallographic characteristics of samples have been compared with other researches.

Figure 1: Sketch diagram of a α-MnO₂ (Hollandite), b β-MnO₂ (Pyrolusite), c δ -MnO₂ (Birnessite), d γ -MnO₂ (Nsutite) [8]

Figure2: Schematic illustration of the transformations of manganese oxides under different conditions [17].

2-Experimaintal Part

I .Material

Manganese chloride (MnCl₂. $6(H_2O)$), Potassium hydroxide (KOH), toluene (C₇H₈) were purchased from Sigma Aldrich, distilled water from Lab.

II. Characterizations Techniques

The optical transmittance properties of MnO_2 by Fourier Transform-Infrared Spectroscopy (FT-IR) from (SHIMADZO IRAFFINITY) probes. The morphology of MnO_2 were investigated with scanning electron microscope (SEM, the VEGA Easy Probe). Phase composition of MnO_2 was observed by X-ray diffraction (Philips PW 1050 X-ray diffract meter of $1.5^{\circ}A$ from Cu-K α . Additionally).

Crystallite size calculated by Debye-Scherer equation $D = 0.0 \lambda/B = 0.0 \lambda$ (1)

 $D = 0.9 \lambda / B_{1/2} \cos (2\theta)$ (1) Whereas: λ is the wave length of the used radiation.B1/2 is the broadness of peak with maximum intensity in half height.

III. Synthesis of MnO₂Nanostructure

MnO₂Nps have been prepared by using 20 ml of toluene as solvent to dissolve 2 g of KOH pellets with vigorous stirring for 10 hrs at room temperature. Then, 3 g of MnCl₂· $6H_2O$ added into this solution, refluxing process takes 3 hrs followed by filtration for separation, then MnO₂ precipitate washed with distilled water. The compound was dried for 6 hrs at 100 °C in an oven, finally calcinations process at 500 °C.

3. Results

I. XRD results

For studying the crystallinity and crystal, phases of the prepared powder X-ray diffraction used. It is well known that MnO₂ has various polymorphs (i.e. exist in various crystal structure) α -, β -, γ -, δ -, ε - and λ -types and so forth, each form differs from the other in the arrangement of the basic structural unit of ([MnO₆] octahedron).According to these links of octahedron, MnO₂ may exist as tunnel structure similar to chain such as α -, β -, and γ -types, layered or sheet structure like δ -MnO₂, and as 3D structure like λ -type [21]. α -MnO₂, β - MnO₂ and γ - MnO₂ phases have onedimensional (1D) tunnels with X*X octahedral cross section (X= 5 1, 2, 3, or 4) in their crystal structure, the phase δ - MnO₂ is 2D-layered compound, while γ - MnO₂ has 3D spinel structure [21]. Figure 3 shows XRD pattern of the prepared powder. It shows the presence of 28.5° which is the highest peak belong to α -MnO₂ phase according to the standard (JCPDS: 44 - 0141) making it the predominant phase [20]. Moreover, the other detected peaks indicating impurity of the synthesized powder with presence of mixture of Mn₃O₄ and Mn₂O₃ as shown in Fig.3, at which compared with the powder prepared from reaction of water-free glycerol added to $Mn(NO_3)_2$ and calcinated around 500°C [22].Also, the sharp diffraction peaks reveal that the products are well crystalline e in nature. Table (2) shows all characteristics of XRD of prepared powder. Manganese dioxide crystallite size calculated by Debye-Scherer was 17.3 nm.

Figure 3: X-ray diffraction pattern of the prepared powder.

Table 1: Characteristics of XRD of prepared powder

No.	2 theta (deg)	d (A)	I/I1	FWHM	Intensity
1	23.2813	3.81766	4	0.4537	72
2	28.5263	3.12653	100	0.4951	1843
7	45.3232	1.99929	3	0.488	57
8	49.4968	1.84003	4	0.489	74
9	50.3713	1.81012	10	0.4827	192
10	55.3101	1.6596	11	0.5005	196
11	58.8252	1.56853	11	0.4803	207
12	65.8225	1.41771	6	0.3302	104
13	66.5698	1.4036	13	0.5319	243
14	73.9157	1.28121	7	0.5568	129

II. FTIR results

Fourier transformation infrared (FTIR) spectroscopy has high sensitivity for detection both organic and inorganic species with low content. Spectrum of FTIR for synthesized nanomaterial presented in Figure 4. usually bands in the range of (400-800) cm⁻¹assigned to Mn-O vibrations [23], still for more specification the two absorption bands at (661.58 and 474.49) cm^{-1} belong to the stretching collision of O-Mn-O, which denotes to the presence of MnO₂. The broad bands of absorptions in the range between 4000 and 3000 cm⁻¹ are assigned to both H–O–H stretching collision and hydroxylgroups, while the at 1649cm⁻¹ it was characterized to bending collision of adsorbed water H₂O molecule.

III. SEM results

Manganese dioxide (MnO_2) has various crystal structures because the wide variety of corners and/or edges sharing arrangements of building block units [1]. Figure 5 shows SEM photographs at different magnifications. It is clear that the synthesized powder has two different shapes like – chains give porous form Figure (5a) and clusters Figure (5 b and c) which have a great tendency for agglomeration due to their surface energy leading to the formation of large surface area, this irregular agglomerated form similar with Abdul Hakeem [24] at which cubic MgO nanoparticles were synthesized by non aquoussol gel and so big particle takes place due to Ostwald ripening process with a limited porosity and crystalinity.

Figure 4: FTIR spectrum of MnO₂ nanostructure at range (a) 400-4000cm⁻¹ (b) 400-1000 cm⁻¹

4. Conclusion

MnO₂ nanoparticles a have large number of potential applications in the field of sensors, catalysis, pharmaceutical industries, piezoelectric crystals and electrodes of fuel cells.In current work, MnO₂ nanoparticles synthesized by precipitation method using inorganic precursor and toluene as solvent. Calcination temperature was 500°C in order to obtain MnO₂ nanoparticles, since it plays a vital role in the formation of the final product as well as nanoparticles morphology. XRD result indicate to the presence of predominant α -MnO₂ phase and mixture of Mn₃O₄ and Mn₂O₃.Different shapes chain with porous appearance regular chips have a great tendency for agglomeration due to their surface energy leading to the formation clusters.

SEM MAG: 10.00 kx SEM HV: 10.00 kv Name: 12 WD: 29.20 mm Date(m/d/y): 06/07/15 VEGA\\ TESC

Figure 5: SEM photographs of MnO₂ nanostructure

References

[1] H. Adelkhani, M. Ghaemi and S. M. Jafari, "Novel Nanostructured MnO_2 Prepared by Pulse Electro deposition: Characterization and Electro kinetics," J. Mater. Sci. Technol., Vol. 24 No. 6, 2008.

[2] S.S. Zumdahl, "Chemical Principles," Houghton Mifflin Company, 6th Ed. 2009.

[3] J. Cao, Q. H. Mao, L. Shi and Y.T. Qian, "Fabrication of γ -MnO2/ α -MnO2/ hollow core/shell structures and their application to water treatment," Journal of Materials Chemistry, Vol. 21, pp. 16210–16215, 2011.

[4] D. Yan, S. Cheng, R.F. Zhuo et.al., "Nanoparticles and sponge-like porous networks of manganese oxides and their microwave absorption properties," Nanotechnology, Vol. 20, No. 10, Article ID 105706, 2009.

[5] Y.W. Tan, L.R. Meng, Q. Peng and Y.D. Li, "Onedimension single-crystalline Mn_3O_4 nanostructures with tunable length and magnetic properties of Mn_3O_4 nanowires," Chemical Communications, Vol. 47, No. 4, pp. 1172–1174, 2011.

[6] X. Zhang, Z. Xing, Y. Yu et al., "Synthesis of Mn_3O_4 nanowire and their transformation to $LiMn_2O_4$ polyhedrons, application of $LiMn_2O_4$ as a cathode in a lithium-ion battery," CrystEng-Comm, Vol. 14, No.4, pp. 1485–1489, 2012.

[7] R. Ma, Y. Bando, L. Zhang, and T. Sasaki, "Layered MnO_2 nanobelts: hydrothermal synthesis and electrochemical measurement," Advanced Materials, Vol. 16, No.11, pp. 918–922, 2004.

[8] F.H. Zadeh, M. Mehdi Kashani Motlagh and A. Maghsoudipour, "A comparative study of hydrothermal and sol–gel methods in the synthesis of MnO_2 nanostructures" J Sol-Gel Sci Technol, 51, pp. 169–174, 2009.

[9] T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Cros-nier and D. Belanger, "Crystalline MnO₂as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors", Journal of the Electrochemical Society, Vol. 153, No. 12, pp. A2171-A2180, 2006.

[10] P. Ragupathy, D.H. Park, G. Campet, H.N. Vasan, S.J. Hwang, J.-H. Choy and N. Munichandraiah, "Remarkable Capacity Retention of Nanostructured Manganese Oxide upon Cycling as an Electrode Material for Supercapacitor," Journal of Physical Chemistry C, Vol. 113, No. 15, pp. 6303-6309, 2009.

[11] J. Ni, W. Lu, L. Zhang, B. Yue, X. Shang and Y. Lv, "Low-Temperature Synthesis of Monodisperse 3D Manganese Oxide Nanoflowers and Their Pseudocapacitance Properties", Journal of Physical Chemistry C, Vol. 113, No. 1, pp. 54-60, 2009.

[12] W. Li, Q. Liu, Y. Sun, J. Sun, R. Zou, G. Li, X. Hu, G. Song, G. Ma, J. Yang, Z. Chen and J. Hu, "MnO₂ Ultra- long Nanowires with Better Electrical Conductivity and Enhanced Supercapacitor Performances," Journal of Materials Chemistry, Vol. 22, No. 30, pp. 14864- 14867, 2012.

[13] X. Wang, A. Yuan and Y. Wang, "Supercapacitive Behaviors and Their Temperature Dependence of Sol-Gel Synthesized Nanostructured Manganese Dioxide in Lithium Hydroxide Electrolyte," Journal of Power Sources, Vol. 172, No. 2, pp. 1007-1011, 2007.

[14] T.T. Truong, Y. Liu, Y. Ren, L. Trahey and Y. Sun "Morphological and Crystalline Evolution of Nanostructured MnO_2 and Its Application in Lithium-Air Batteries," Acs Nano, Vol. 6, No. 9, pp. 8067-8077, 2012.

[15] H.K. Manisha and P. Sangwan, "Synthesis and Characterization of MnO₂ Nanoparticles using Co precipitation Technique," International Journal of Chemistry and Chemical Engineering, Vol.3, Number 3, pp. 155-160, 2013.

[16] I.B. Singh and S.M. Park" Synthesis of β MnO₂ nanowire and their electrochemical capacitive behavior," Indian Journal of Chemistry, Vol. 54A, pp. 46-51, 2015.

[17] R. Tsybukh, "A comparative study of platinum nanodeposits on HOPG (0001), MnO(100) and $MnO_x/MnO(100)$ surfaces by STM and AFM after heat treatment in UHV, O₂, CO and H₂," Leiden University, Amsterdam, 2010.

[18] L. Feng, Z. Xuan, H. Zhao, Y. Bai, J. Guo, C.Su and X. Chen, "MnO₂ prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery," Nanoscale Research Letters, 9:290, 2014.

[19] M. Balamurugan, G. Venkatesan1, S. Ramachandran1 and S. Saravanan, "Synthesis and Characterization of Manganese Oxide Nanoparticles," Synthesis and Fabrication of Nanomaterials, pp. 311-314, 2015.

[20] J. Wu, H. Huang, L. Yu and J. Hu, "Controllable Hydrothermal Synthesis of MnO_2 Nanostructures," Advances in Materials Physics and Chemistry, Vol. 3, pp. 201-205, 2013.

[21] Y. Khana, S.K. Durrani, "Mild hydrothermal synthesis of γ -MnO₂ nanostructures and their phase transformation to α -MnO₂ nanowires," Mater. Res., Vol. 26, No. 17, Sep 14, 2011.

[22] O. Jankovskýa, D. Sedmidubskýa, P. Šimeka, Z. Sofera, P. Ulbrichb and V. Bartůněka, n, "Synthesis of MnO, Mn_2O_3 and Mn_3O_4 nanocrystal clusters by thermal decomposition of manganese glycerolate," Ceramics International, 41, 595–601, 2015.

[23] D. Jaganyi, M. Altaf, I. Wekesa, "Synthesis and Characterization of Whisker-Shaped MnO₂ Nanostructure at Room Temperature," Appl Nanosci, Vol. 3, pp. 329–333, 2013.

[24] T.A. Abdul Hakeem and W. Ahmed, "Synthesis of MgO Nanopowder via Non Aqueous Sol–Gel Method," Adv. Sci. Lett., Vol. 5, No. xx, pp.1-3, 2012.