Shaima'a B. Yass -
Master of Science in Mathematics from University of Baghdad, College of Science, Baghdad, Iraq.

Received on: 27/9/2016
Accepted on: 20/7/2017

Generalized Dependent Elements of Generalized Reverse Derivation on Semiprime Rings

Abstract

Let R be an associative ring, and $\check{S}: R \longrightarrow R$ be a map, if there exists an element $e \in R$ such that $\check{S}(u) e=[u, e] e$, for every $u \in R$, in this case e is called Generalized Dependent Element of \check{S}, and $\check{G}-D(\check{S})$ denote the set of all Generalized Dependent Elements of \check{S}. In this paper the result proved, let R be semiprime ring, and $F: R \longrightarrow R$ is a generalized reverse derivation, related with derivation d, then $e \in \breve{G}-D(F)$, iff, $e \in \mathrm{Z}(\mathrm{R})$ and $e F(u)=0$ for every $u \in R$.

Keywords- semiprime rings, derivation, generalized reverse derivation.

How to cite this article: S. B. Yass, "Generalized Dependent Elements of Generalized Reverse Derivation on Semiprime Rings," Engineering and Technology Journal, Vol. 36, Part B, No. 1, pp. xx-yy, 2018.

1. Introduction

Through our paper, R is ring(associative) and $Z(R)$ denote center R. Recollection, a ring R is semiprime whenever $x R x=(0)$, then $x=0$. An additive map $d: R \longrightarrow R$ is named a derivation (resp. Jordan derivation) if $d(u v)=d(u) v+$ $u d(v)$ (resp. $\left.d\left(u^{2}\right)=d(u) u+u d(u)\right)$ satisfy for every $u, v \in R$. Following [1] an additive map d: $\mathrm{R} \longrightarrow \mathrm{R}$ named left derivation (resp. Jordan left derivation) if $d(u v)=u d(v)+v d(u)$ (resp. $d\left(u^{2}\right)=$ $2 u d(u))$ for every $u, v \in R$. Obviously, every left derivation on a ring R is a Jordan left derivation, but the converse in general is not true. Ashraf and Ali in [2] defined the generalized left derivation as, an additive map $F: R \longrightarrow R$ is named a generalized left derivation (resp. a generalized Jordan left derivation) related with Jordan left derivation, if there exists a Jordan left derivation $d: R \longrightarrow R$, such that $F(u v)=u F(v)+v d(u)$ (resp. $\left.F\left(u^{2}\right)=u F(u)+u d(u)\right)$ for every $u, v \in R$. In [3] Vukman and Brešar defined the reverse derivation as, an additive map $d: \mathrm{R} \longrightarrow \mathrm{R}$ satisfactory $d(u v)=d(v) u+v d(u)$, for every u, $v \in R$. It is clear, that reverse derivation and derivation are the same if R is commutative. In [4], [5] explored a more reverse derivations. The concept of generalized reverse derivation was introduced first in[6] as, an additive map F : $R \longrightarrow R$ is named a generalized reverse derivation if we have a reverse derivation $d: R \longrightarrow R$, satisfy: $F(u v)=F(v) u+v d(u)$, for every $u, v \in R$. Following Reddy and et al. in [7], work replacing of existence of reverse derivation by derivation in above definition of generalized reverse derivation in [6].The research of dependent elements appeared in [8], by Thaheem and Laradji. Lately, several authors Ali, Chaudhry and others in [9, 10,11 , and 12] proved more results on dependent
elements on rings. Let us take $\check{S}: R \longrightarrow R$ as a map, if there exists an element $e \in R$ such that $\check{S}(u) e=[u, e] e$, for every $u \in R$, in this case e is called Generalized Dependent Element of \check{S}, and $\breve{G}-D(\check{S})$ denote the set of all Generalized Dependent Elements of \check{S}. In this paper the result proved, if R is semiprime ring, and F is a generalized reverse derivation related with derivation d, on R, then $\mathrm{e} \in \breve{G}-D(F)$, iff , $e \in \mathrm{Z}(\mathrm{R})$ and $e F(u)=0$ for every $u \in R$. In addition, we gave some results with semiprime ring of Generalized Dependent Elements for generalized reverse derivation related with derivation d.

2. The Results

Theorem. 1

Suppose that R is semiprime ring, then
1 - If there exist $x \in R$, such that $x[x, u]=0$, for every $u \in R$, then $x \in Z(R)$, [13].
2-If there exist $x \in R$, such that $[x, u] x=0$, for every $u \in R$, then $x \in Z(R)$, [6].
Theorem. 2 [14]
Let R be a semiprime ring, and d be an inner derivation on R, if $[d(u), u]=0$, for every $u \in R$, then $\mathrm{d}=0$.

Theorem. 3

Suppose that R is a semiprime ring, and $\mathrm{F}: \mathrm{R} \longrightarrow \mathrm{R}$ is a generalized reverse derivation related with derivation d, then $d(u) \in Z(R)$, for every $u \in R$.
Proof: Let us take:
$F\left(u^{2} v\right)=F(v) u^{2}+v d\left(u^{2}\right)$, for every $u, v \in R$ (1)

That is:

$F\left(u^{2} v\right)=F(v) u^{2}+v d(u) u+v u d(u)$, for every u, $\mathrm{v} \in \mathrm{R}$

Moreover, let us take:
$F(u . u v)=F(u v) u+u v d(u)$, for every $u, v \in R$ (3)

That get:
$F\left(u^{2} v\right)=F(v) u^{2}+\operatorname{vd}(u) u+u v d(u)$, for every $u, v \in R$

Comparing (2) and (4):
$[u, \quad v] d(u)=0, \quad$ for every $u, \quad v \in R$
(5)

Linearizing (6) on u :
$[u, v] d(t)+[t, v] d(u)=0$,for every $t, u, v \in R$ (6)

Putting $v=v z$ in (5) and from (5), we obtain:
$[\mathrm{u}, \mathrm{v}] \operatorname{zd}(\mathrm{u})=0$, for every $\mathrm{t} \quad, \mathrm{u}, \quad \mathrm{v} \in \mathrm{R}$ (7)

Also, Putting $\mathrm{z}=\mathrm{d}(\mathrm{t}) \mathrm{z}[\mathrm{t}, \mathrm{v}]$ in (7):
$[u, v] d(t) z[t, v] d(u)=0$, for every $u, v, z, t \in R$ (8)

From (6) and (8), we obtain:
$[u, v] d(t) z[u, v] d(t)=0$, for every $t, u, v, z \in R$ (9)

From hypothesis, R is semiprime, obtain:
$[\mathrm{u}, \mathrm{v}] \mathrm{d}(\mathrm{t})=0$, for every $\mathrm{u}, \mathrm{v}, \mathrm{t} \in \mathrm{R}$ (10)

Theorem (2.1)(ii), give $d(t) \in Z(R)$, for every $t \in$ R.

Theorem. 4

Let R be semiprime ring, and $F: R \longrightarrow R$ is a generalized reverse derivation related with derivation d. Then $F(u) \in Z(R)$, for every $u \in R$.
Proof: our assumption, give:
$F\left(u v^{2}\right)=F\left(v^{2}\right) u+v^{2} d(u)$, for every $v, u \in R$
(1)

That is:
$F\left(u v^{2}\right)=F(v) v u+v d(v) u+v^{2} d(u)$, for every v ,$u \in R$

Also,
$F\left(u v^{2}\right)=F((u v) v)=F(v) u v+\operatorname{vd}(u v)$, for every v ,u \in

R

(3)

That is:

$F\left(u v^{2}\right)=F(v) u v+\operatorname{vd}(u) v+\operatorname{vud}(v)$, for every v , $\mathrm{u} \in$

R

(4) By Theorem 2.3, (4) give:
$F\left(u v^{2}\right)=F(v) u v+v^{2} d(u)+v d(v) u$, for every v, u \in

R

(5)

From (5), (2), we acquire:
$F(v) v u=F(v) u v$, for every $v, u \in R$ (6)
$\mathrm{F}(\mathrm{v})[\mathrm{v}, \mathrm{u}]=0$, for every $\mathrm{v}, \mathrm{u} \in \mathrm{R}$ (7)

Putting $\mathrm{u}=\mathrm{ru}$ in (7), and using (7), leads to:
$\mathrm{F}(\mathrm{v}) \mathrm{r}[\mathrm{v}, \mathrm{u}]=0$,for every $\mathrm{r}, \mathrm{v}, \mathrm{u} \in \mathrm{R}$
Furthermore, linearizing of relation (7), give:
$F(v)[s, u]+F(s)[v, u]=0$, for every $s, u, v \in R(9)$ This implies:
$F(v)[s, u]=-F(s)[v, u]$, for every $s, u, v \in R$ (10)

Now, putting $\mathrm{r}=[\mathrm{s}, \mathrm{u}] \mathrm{rF}(\mathrm{s})$ in (8), and using (10), leads to:
$\mathrm{F}(\mathrm{s})[\mathrm{v}, \mathrm{u}] \mathrm{rF}(\mathrm{s})[\mathrm{v}, \mathrm{u}]=0$, for every $\mathrm{s}, \mathrm{u}, \mathrm{v}, \mathrm{r} \in \mathrm{R}$ (11)

Because R is semiprime, (11) gives:
$F(s)[v, u]=0$, for every $s \quad, u, \quad v \in R$ (12)

Using Theorem (2.1)(i), we obtain $F(s) \in Z(R)$ for every s in R .

Corollary . 5
Let R be semiprime ring, and $\mathrm{F}: \mathrm{R} \longrightarrow \mathrm{R}$ is a generalized reverse derivation F related with derivation d. Then F is a generalized left derivation with Jordan left derivation d.

Definition. 6

Let $\check{S}: R \longrightarrow R$ is a map, if there exists an element $e \in R$ such that $\check{S}(u) e=[u, e] e$, holds for every $\mathrm{u} \in \mathrm{R}$, in this case e is called Generalized Dependent Element of \check{S}, and $\breve{G}-D(\check{S})$ denote the set of all Generalized Dependent Elements of Š.

Examples . 7

1)

Let $R=\left\{\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]: a, b, c \in Z\right.$, the set of integer $\}$
Define map Š: $\mathrm{R} \longrightarrow \mathrm{R}$, as:
$\check{S}\left(\left[\begin{array}{ll}a & \mathrm{~b} \\ 0 & \mathrm{c}\end{array}\right]\right)=\left[\begin{array}{ll}0 & \mathrm{~b} \\ 0 & 0\end{array}\right]$
Take the element $e=\left[\begin{array}{cc}a 1 & 0 \\ 0 & 0\end{array}\right] \in R$
It is clear that, e is Generalized Dependent Element of Š
Note that if we take $e=\left[\begin{array}{cc}a 1 & b 1 \\ 0 & c 1\end{array}\right] \in R$, we show that, e is not Generalized Dependent Element of Š.
2)

Let $R\left\{\left[\begin{array}{ccc}0 & \mathrm{a} & \mathrm{b} \\ 0 & 0 & \mathrm{a} \\ 0 & 0 & 0\end{array}\right]: \mathrm{a}, \mathrm{b} \in \mathrm{Z}\right.$, the set of integer $\}$
Define map $U^{\prime}: R \longrightarrow R$, as:
$U\left(\left[\begin{array}{lll}0 & \mathrm{a} & \mathrm{b} \\ 0 & 0 & \mathrm{a} \\ 0 & 0 & 0\end{array}\right]\right)=\left[\begin{array}{lll}0 & 0 & \mathrm{~b} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

That is:

Take the element $\mathrm{e}=\left[\begin{array}{ccc}0 & \mathrm{a} 1 & \mathrm{~b} 1 \\ 0 & 0 & \mathrm{a} 1 \\ 0 & 0 & 0\end{array}\right] \in \mathrm{R}$

It is clear that; e is Generalized Dependent Element of U '.

Theorem. 8

Let R be semiprime ring, and $\mathrm{F}: \mathrm{R} \longrightarrow \mathrm{R}$ is a generalized reverse derivation F related with derivation d. Thus $e \in \breve{G}-D(F)$, iff, $e \in Z(R)$ and $F(u) e=0$, for every $u \in R$
Proof: From hypothesis, $e \in \breve{G}-D(F)$, thus:
$F(u) e=[u, e] e, \quad$ for every $u \in \quad R$ (1)

Putting $\mathrm{u}=\mathrm{uv}$ in (1), we have:
$F(v) u e+v d(u) e=u[v, e] e+[u, e] v e$, for every u, v

By Theorem 2.4, (2) gives:
$u F(v) e+v d(u) e=u[v, e] e+[u, e] v e$, for every v, u

Comparing (3) and (1), to obtain:
$\operatorname{vd}(u) e=[u, \quad e] v e, \quad$ for every $\quad u, v \in \quad R$ (4)

Right multiplication of (4) by z, leads to:
$\operatorname{vd}(u) e z=[u, ~ e] v e z, ~ f o r ~ e v e r y ~ u, v, ~ z \in R$ (5)

Putting vz instead of v in (4), we get:
$\operatorname{vzd}(u) e=[u, \quad e] v z e, \quad$ for \quad every $\quad z, u, v \in \quad R$ (6)

Use Theorem 2.3 in (6), and Subtracting (5) from (6), we get:
$\operatorname{vd}(\mathrm{u})[\mathrm{z}, \mathrm{e}]=[\mathrm{u}, \mathrm{e}] \mathrm{v}[\mathrm{z}, \mathrm{e}]$, for every $\mathrm{z} \quad, \mathrm{u}, \mathrm{v} \in \mathrm{R}$ (7)

Left multiplication of (7) by u, leads to:
$\operatorname{uvd}(u)[z, e]=u[u, e] v[z, e]$, for every $z, u, v \in R$ (8)

Putting v=uv in (7), to obtain:
$\operatorname{uvd}(\mathrm{u})[\mathrm{z}, \mathrm{e}]=[\mathrm{u}, \mathrm{e}] \operatorname{uv}[\mathrm{z}, \mathrm{e}]$, for every $\mathrm{z}, \mathrm{u}, \mathrm{v} \in \mathrm{R}$
(9)

From (8) and (9), we get:
$u[u, e] v[z, e]=[u, e] u v[z, e]$, for every $z, u, v \in R$
This implies:
$[\mathrm{u},[\mathrm{u}, \mathrm{e}]] \mathrm{v}[\mathrm{z}, \mathrm{e}]=0$, for every $\mathrm{z}, \mathrm{u}, \mathrm{v} \in \mathrm{R}$ (11)

Right multiplication of (11) by z , obtain:
$[\mathrm{u},[\mathrm{u}, \mathrm{e}]] \mathrm{v}[\mathrm{z}, \mathrm{e}] \mathrm{z}=0$, for every $\mathrm{z}, \mathrm{u}, \mathrm{v} \in \mathrm{R}$ (12)

Putting $v=v z$ in (11), we have:
$[\mathrm{u},[\mathrm{u}, \mathrm{e}]] \mathrm{vz}[\mathrm{z}, \mathrm{e}]=0$, for every $\mathrm{z}, \mathrm{u}, \mathrm{v} \in \mathrm{R}$ (13)

Removing (12) from (13), we get:
$[u,[u, e]] v[z,[z, e]]=0$, for every $z, u, v \in R$ (14)

That get:
$[u,[u, \quad e]] v[u,[u, \quad e]]=0$, for every $u, v \in R$ (15)

By hypothesis, R is semiprime, implies:
$[\mathrm{u},[\mathrm{u}, \mathrm{e}]]=0$, for every $\mathrm{u} \in \mathrm{R}$
Defined the inner derivation $\Theta: R \longrightarrow \mathrm{R}$ as:
$\Theta(u)=[u, e]$, is commuting, from Theorem 2.2, implies $[u, e]=0$, for every $u \in R$, then $e \in Z(R)$
Further, from relation(1), we obtain $\mathrm{F}(\mathrm{u}) \mathrm{e}=0$ for every $u \in R$
Conversely, $\quad F(u) e=0, \quad$ for \quad every $\quad u \in R$ (17)

Also, we have $\mathrm{e} \in \mathrm{Z}(\mathrm{R})$, this get:
$[\mathrm{u}, \mathrm{e}]=0, \quad$ for \quad every $\quad u \in R$
(18)

Right multiplication of (18) by e, we get:
$[\mathrm{u}, \mathrm{e}] \quad \mathrm{e}=0$, for every $\mathrm{u} \in \mathrm{R}$ (19)

From (17) and (19), one obtains:
$F(u) e=0=[u, e] e$, for every $u \in R$

Corollary. 9

Let R be semiprime ring, and $F: R \longrightarrow R$ is a generalized reverse derivation F related with derivation d. Then $e \in G \breve{G}(F)$, if and only if, $\mathrm{e} \in \mathrm{Z}(\mathrm{R})$ and $\mathrm{eF}(\mathrm{u})=0$, for every $\mathrm{u} \in \mathrm{R}$.
Proof: From hypothesis $\mathrm{e} \in \breve{\mathrm{G}}-\mathrm{D}(\mathrm{F})$, thus by Theorem 2.8, $\mathrm{e} \in \mathrm{Z}(\mathrm{R})$ and $\mathrm{F}(\mathrm{u}) \mathrm{e}=0$
So, $e \in Z(R) \subset R$, that is $e \in R$, and by Theorem 2.4 $(F(R) \subseteq Z(R))$, we obtain $e F(u)=0$, for every $u \in R$. (we can say $e \in Z(R), F(R) \subseteq R$, we obtain $\mathrm{eF}(\mathrm{u})=0$, for every $u \in \mathrm{R}$)
Conversely, let $\mathrm{eF}(\mathrm{u})=0$, by Theorem $2.4(\mathrm{~F}(\mathrm{R}) \subseteq$ $\mathrm{Z}(\mathrm{R})$), implies
$F(u) e=0$, for \quad every $\quad u \in R$ (1)

And $e \in Z(R)$, that is:
$[u, \quad e]=0, \quad$ for \quad every $\quad u \in R$ (2)

Right multiplication of relation (2) by e, we get:
$[\mathrm{u}, \mathrm{e}] \quad \mathrm{e}=0$, for every $\mathrm{u} \in \mathrm{R}$ (3)

From (1) and (3), one obtains:
$F(u) e=0=[u, ~ e] e, \quad$ for every $u \in R$ (4)

This implies $\mathrm{e} \in \mathrm{G}-\mathrm{D}(\mathrm{F})$.

Corollary . 10

Let R be semiprime ring, and $F: R \longrightarrow R$ is a generalized reverse derivation F related with derivation d, if $e \in \breve{G}-D(F)$, then $d(e)=0$
Proof: From hypothesis, $e \in \breve{G}-D(F)$,thus by Corollary 2.9, we obtain:
$e F(u)=0$, for \quad every $\quad u \in \quad R$ (1)

Putting $u=r u$ in (1), one obtains:
$e F(u) r+e u d(r)=0$, for every $u, r \in R$
From (1) and (2), one obtains:
$\operatorname{eud}(r)=\quad 0, \quad$ for \quad every $\quad u, r \in \quad R$
(3)

Putting d(r)ue instead of u in (3), get:
ed(r)ue $d(r)=0$, for every $u, r \in R$
(4)

From hypothesis, get:
e for $\quad d(r)=0$ every $\quad r \in R$
(5)

Putting $r=d(r)$ in (5), get:
e $d(d(r))=0$,
for every $r \in R$
(6)

Also from(5), we get:
$\mathrm{d}(\mathrm{e} \quad \mathrm{d}(\mathrm{r}))=0$,
(7)

This gets:
$\mathrm{d}(\mathrm{e}) \mathrm{d}(\mathrm{r})+\mathrm{ed}(\mathrm{d}(\mathrm{r}))=0$,
(8)

From (6) and (8), we get:
$d(e) d(r)=0$, for every $r \quad \in R$ (9)

Putting re instead r in (9), get:
$d(e) d(r) e \quad+d(e) r d(e)=0, \quad$ for every $\quad r \quad \in R$ (10)

From (9) and (10), we get:
$d(e) \operatorname{rd}(e)=0$,for every $\quad r \quad \in R$
(11)

Again, R is semiprime, implies:
$\mathrm{d}(\mathrm{e})=0$
(12)

Corollary. 11

Let R be semiprime ring, and $F: R \longrightarrow R$ is a generalized reverse derivation F related with derivation d, if $e \in \breve{G}-D(F)$, then $F(e)=0$
Proof: From hypothesis $\mathrm{e} \in \mathrm{G}-\mathrm{D}(\mathrm{F})$,thus by Corollary 2.9, get:
$e F(u)=0$, for every $u \in R$
Also, Theorem 2.8, get:
$F(u) e=0, \quad$ for every $u \in R$
From (2), implies:
$F(F(u) e)=0, \quad$ for every $u \in R$
This implies:
$\mathrm{F}(\mathrm{e}) \mathrm{F}(\mathrm{u})+\mathrm{ed}(\mathrm{F}(\mathrm{u}))=0, \quad$ for every $\mathrm{u} \in \mathrm{R}$
Also, From (1),
$\mathrm{d}(\mathrm{eF}(\mathrm{u}))=0$, for every $\mathrm{u} \in \mathrm{R}$
This implies:
$d(e) F(u)+e d(F(u))=0$, for every $u \in R$
From Corollary 2.10:
$\operatorname{ed}(F(u))=0$, for every $u \in R$
From (4) and (7), get:
$F(e) F(u)=0$, for every $u \in R$
Right multiplication of relation(8) by r, leads to:
$F(e) F(u) r=0$, for every $u, r \in R$

Theorem 2.4, leads to:
$F(e) \quad r \quad F(u)=0, \quad$ for \quad every $\quad u, \quad r \in R$ (10)

For $\mathrm{u}=\mathrm{e}$ in (10), implies:
$F(e) \quad r \quad F(e)=0, \quad$ for \quad every $\quad r \quad \in R$ (11)

By hypothesis of R implies:
F(e) $=0$

Corollary . 12

Let R be semiprime ring, and $F: R \longrightarrow R$ is a generalized reverse derivation F related with derivation d, then $\breve{G}-D(F)$ is semiprime commutative subring of R .
Proof: take $\mathrm{e} \in \mathrm{G}-\mathrm{D}(\mathrm{F})$, thus Theorem 2.8, gives:
$\mathrm{e} \in \mathrm{Z}(\mathrm{R})$
(1)

This get:
eu=ue, for \quad every $\quad u \in \quad R$ (2)

Also, let $\mathrm{b} \in \breve{\mathrm{G}}-\mathrm{D}(\mathrm{F})$, by Theorem 2.8
$b \in Z(R)$
(3)

That is:
bu=ub , for every $u \in \quad R$ (4)

Subtracting (4) from (2), obtain:
(e-b) $u=u(e-b) \quad$, for every $u \in \quad R$ (5)

This get:
(e-b) $\in \mathrm{Z}(\mathrm{R})$
(6)

Since the element e , and the element $\mathrm{b} \in \mathrm{G}-\mathrm{D}(\mathrm{F})$, and from Theorem 2.8, we get:
$F(u) \mathrm{e}=0$,
And
$F(u) \quad b=0, \quad$ for \quad every $\quad u \in \quad R$ (7)
$F(u) \quad(e-b)=0, \quad$ for \quad every $\quad u \in \quad R$

(8)

From (6), (8), and Theorem 2.8, we get:
$(e-b) \in \mathrm{G}-\mathrm{D}(\mathrm{F})$
Now since $\mathrm{b} \in \mathrm{G}-\mathrm{D}(\mathrm{F})$, by Corollary 2.9 , we get:
$b \quad F(u)=0$,for every $\quad u \in \quad R$ (10)

Multiply of (10) from the left by a, obtain:
eb $F(u)=0$, for every $u \in \quad R$ (11)

Right multiplication of (2) by b, we get:
eub=ueb, for every $u \in \quad R$ (12)

From (4), (12), we get:
ebu=ueb, for every $u \in \quad R$ (13)

That is:
eb $\in \mathrm{Z}(\mathrm{R})$
By Corollary 2.9, and (11) and (14), gives:
$\mathrm{eb} \in \breve{\mathrm{G}}-\mathrm{D}(\mathrm{F})$
From (9) (15), we ${ }^{\text {G }}$-D(F)
From (9) and (15), we get $\breve{G}-\mathrm{D}(\mathrm{F})$ subring of R .
Also, because $e, b \in Z(R) \subset R$, we get $e b=b e$, that
is $\breve{G}-D(F)$ is commutative subring of R.
To prove $\breve{\mathrm{G}}-\mathrm{D}(\mathrm{F})$ is semiprime, take e $\breve{\mathrm{G}}-\mathrm{D}(\mathrm{F}) \mathrm{e}=$ $0, \mathrm{e} \in \mathrm{G}-\mathrm{D}(\mathrm{F})$, Then:
eue $=0$, for every $u \in \breve{G}-D(F)$
In particular, $\mathrm{e}^{3}=0$
Thus we get $\mathrm{e}=0$ (R is semiprime)
That is, $\mathrm{G}-\mathrm{D}(\mathrm{F})$ is semiprime.

Corollary. 13

Let R be commutative semiprime ring, and $F: R \longrightarrow R$ is a generalized reverse derivation F related with derivation d. then $\breve{G}-D(F)$ is an ideal of R.
Proof: take $\mathrm{e}, \mathrm{b} \in \mathrm{G}-\mathrm{D}(\mathrm{F})$, and from (9) in Corollary 2.12 (see (1) to (9) in Corollary 2.12), we get:
$(\mathrm{e}-\mathrm{b}) \in \quad$ Ğ-D(F) (1)

Also, take $\mathrm{e} \in \mathrm{G}-\mathrm{D}(\mathrm{F})$, and take $\mathrm{r} \in \mathrm{R}$, then:
$\mathrm{F}(\mathrm{u}) \mathrm{e}=0$, for every $\quad \mathrm{u} \in$
(2)

Right multiply of (2) from the right by r , to get:
$\mathrm{F}(\mathrm{u}) \mathrm{er}=0$, for every $\quad \mathrm{u} \in \quad \mathrm{R}$
(3)

Also, Since $e \in Z(R), r \in R$, then:
er =re
(4)

From (3),(4), obtain:
$F(u) e r=F(u) r e=0$, for every $u \in R$
Now, Since R commutative:
$\mathrm{er} \in \mathrm{Z}(\mathrm{R})$
(6)

From (5), (6), and by Theorem 2.8, we get:
er $\quad=\quad$ re $\in \quad$ Ğ $\mathrm{D}(\mathrm{F})$
(7)

From (1), (7), we get Ğ-D(F) ideal
Remark.14:
Let R be semiprime ring, I is an ideal on R, then:
(i) I is semiprime subring of ring R
(ii)The center of I is contained in center of R.

References

[1] M. Ashraf and S. Ali, "On generalized Jordan left derivations in rings," Bull. Korean Math. Soc. 45 (2), 253-261, 2008.
[2] M. Ashraf, A. Ali and R. Rekha, "On generalized derivations of prime rings," South-East Bull. Math. 29 (4), 669-675, 2005.
[3] M. Brešar and J. Vukman, "On some additive mappings in rings with involution," A equations Math. 38, 178-185, 1989.
[4] M. Samman, "A note on reverse derivations," Inter. J. of Math. Edu. in Sci. and Tech. 37, 98-101, 2006.
[5] M. Samman and N. Al-Yamani, "Derivations and reverse derivations in semiprime rings," Inter. Math. Forum, 2, 1895-1902, 2007.
[6] S. B. Yass, "Strongly Derivation Pairs on Prime and Semiprime Rings," MSc. Thesis, Baghdad University, 2010.
[7] C.J. Reddy, G.V. Rao, S.V. Kuma "Generalized Reverse Derivations On Semi prime rings," Bull of Soc. Math. Serv. and Stand. 15, 1-4, 2015.
[8] A. Laradji and A.B. Thaheem "On dependent elements in semi prime rings", Math. Jap. 47, 576-584, 1998.
[9] F. Ali and M. A. Chaudhry "Dependent elements of derivations, on semiprime rings," Inter. J. Math and Math. Sci 10, 1-5, 2009.
[10] J. Vukman, "On dependent elements and related problems in rings," Inter. Math. J., 6(2), 93-112, 2005.
[11] C.J. Reedy, S.V. Kumar and G.V. Rao "Reverse Derivations On Semiprime rings," Inter. J. Eng. and Tech. 3, 57-62, 2015.
[12] N.N. Suliman and A.H. Majeed, "On dependent element and free action of derivation in Semi prime rings," Canad. J. pure and Applied Sci., 6(2), 20432047, 2012.
[13] I.N. Herstein, "Rings with involution," Univ. of Chicago Press, Chicago, 1976.
[14] M. Brešar, "Centralizing mappings on von Neumann algebras," Proceedings of the Amer. Math. Soc., 111(2), 501-510, 1991.

Author(s) biography

Shaima'a B. Yass: Master of Science in Mathematics from University of Baghdad, College of Science, Baghdad, Iraq.

