Document Type : Review Paper

Authors

1 aChemical Engineering Department, Faculty of Engineering, Mutah University, P.O. Box 7, Karak, 61710, Jordan

2 Ministry of Science and Technology, AL-Tuwatha Nuclear site, Central Laboratories Directorate (CLD), Baghdad- Iraq.

3 Nuclear Science Research Institute (NSRI), National Center for Nuclear Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.

4 Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 UniversityDrive NW, Calgary, AB T2N1N4, Canada

5 Department of Physics, Gombe State University, Tudun Wada, PMB 127, Gombe State, Nigeria

Abstract

Radioactive waste is generated from fuel cycle processes in nuclear reactors and nuclear power plants (NPPs) in electrical power production, radioisotope manufacturing in nuclear research centers, and medical, industrial, and agricultural applications. Also, natural chain-linked radioisotopes (NORM) are generated from processing and burning fossil fuels and producing oil and natural gas. Therefore, a planned and integrated radioactive waste management strategy must be adopted to protect human health and the environment from the dangers of this waste through published research on a comprehensive radioactive waste management strategy and the testing and dissemination of several treatment options. The main objective is to draw the scientific community's attention to the possibility of using pressure-driven membrane separation in treating radioactive wastewater compared to conventional methods. This short review addresses developments in the treatment and removal of radioactive effluents (LRWs) by pressure-driven membrane methods and improvements in routine treatment of dissolved radioactive ions by chemical treatment of the feed solution followed by membrane separation. Also, recent advances in treating radioactive waste use nanoparticles (NPs) incorporated in polymeric membranes.

Graphical Abstract

Highlights

  • The current short review addresses developments in treating and removing radioactive effluents (LRWs).
  • Pressure-driven membrane separation could be used to treat radioactive wastewater instead of current procedures.
  • Nanoparticle-incorporated polymeric membranes are used to handle radioactive waste.

Keywords

Main Subjects

[1] Pioro, I., Kirillov, P. and Méndez-Vilas, A., Current status of electricity generation at nuclear power plants. Materials and processes for energy: communicating current research and technological developments,  Obninsk, Russia, 1 (2013) 806-817.
[2] Baisden, P.A. and Choppin, G.R Baisden, Nuclear waste management and the nuclear fuel cycle, radiochemistry and nuclear chemistry. Encyclopedia of life support systems (EOLSS), Oxford, UK,2007.
[3] R. Rahman, H. A. Ibrahium, and Y.-T. Hung, Liquid radioactive wastes treatment: a review. Water .,3 (2011) 551-565.doi: https://doi.10.3390/w3020551 
[4] Pabby, A.K., Rizvi, S.S. and Requena, A.M.S. Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications. CRC press.2008, doi: https://doi.org/10.1201/9781420009484
[5] X. Zhang, , G.Ping, and L.Yu, Decontamination of radioactive wastewater: State of the art and challenges forward. Chemosphere., 215 (2019) 543-553.doi:10.1016/j.chemosphere.2018.10.029
[6] Efremenkov, V., Management of low and intermediate level radioactive wastes with regard to their chemical toxicity. IAEA TECDOC 1325. International Atomic Energy Agency, Vienna, 2002.
[7] Buckley, L., Bushart, S., Efremenkov, V., Karlin, Y., Kohout, R., Pabby, A. and Tapsell, G., Application of membrane technologies for liquid radioactive waste processing. IAEA-TRS No. 431.  International Atomic Energy Agency, Vienna, 2004.
[8] V.Kumar, , S-N. Swayang, and K.Deeksha, Comparative evaluation of the radioactivity removal efficiency of different commercially available reverse osmosis membranes. Radiation Protection and Environment .,43 (2020) 100.doi: 10.4103/rpe.RPE_20_20
[9] G.Zakrzewska-Trznadel, Advances in membrane technologies for the treatment of liquid radioactive waste. Desalination ., 321 (2013) 119-130.doi:https://doi.org/10.1016/j.desal.2013.02.022
[10] M. Qasim, M. Badrelzaman, N. N. Darwish, N. A. Darwish, and N. Hilal, Reverse osmosis desalination: A state-of-the-art review. Desalination ., 459 (2019) 59-104.doi: https://doi.org/10.1016/j.desal.2019.02.008
[11] A. H. Orabi, A. E. Abdelhamid, H. M. Salem, and D. A. Ismaiel, Novel amidoxime-functionalized SBA-15-incorporated polymer membrane-type adsorbent for uranium extraction from wastewater. Journal of Water Process Engineering .,43 (2021) 102316.doi: https://link.springer.com/article/10.1007/s10570-021-03749-2
[12] S. Ding, L. Zhang, Y. Li, and L. Hou, Engineering a high-Selectivity PVDF hollow-fiber membrane for cesium removal. Engineering .,5 (2019) 865-871. doi:https://doi.org/10.1016/j.eng.2019.07.021
[13] T. K. Abbas, K. T. Rashid, and Q. F. Alsalhy, NaY zeolite-polyethersulfone-modified membranes for the removal of cesium-137 from liquid radioactive waste. Chemical Engineering Research and Design .,179 (2022) 535-548. doi:https://doi.org/10.1016/j.cherd.2022.02.001
[14] Y. Kim, H. H. Eom, D. Kim, D. Harbottle, and J. W. Lee, Adsorptive removal of cesium by electrospun nanofibers embedded with potassium copper hexacyanoferrate. Separation and Purification Technology ., 255 (2021) 117745.doi: https://doi.org/10.1016/j.seppur.2020.117745
[15] S. Ding, L. Zhang, Y. Li, and L. Hou, Fabrication of a novel polyvinylidene fluoride membrane via binding SiO2 nanoparticles and a copper ferrocyanide layer onto a membrane surface for selective removal of cesium. Journal of hazardous materials ., 368 (2019) 292-299.doi: https://doi.org/10.1016/j.jhazmat.2019.01.065
[16] H.-C. Liu, H.-X. Wang, Y. Yang, Z.-Y. Ye, K. Kuroda, and L. Hou, In situ assembly of PB/SiO2 composite PVDF membrane for selective removal of trace radiocesium from aqueous environment. Separation and Purification Technology ., 254 (2021) 117557.doi: https://doi.org/10.1016/j.seppur.2020.117557
[17] C.-V. Gherasim, K. Hancková, J. Palarčík, and P. Mikulášek, Investigation of cobalt (II) retention from aqueous solutions by a polyamide nanofiltration membrane. J.Membr.Sci.,490 (2015) 46-56.doi: https://doi.org/10.1016/j.memsci.2015.04.051
[18] OLIVEIRA, E.E.D.M., BARBOSA, C.C.R., Bastos, E.T. and AFONSO, J.C.Evaluation of transport properties of nanofiltration membranes exposed to radioactive liquid waste. Brazil, 2011. doi: http://carpedien.ien.gov.br:8080/handle/ien/1780
[19] A. G. Chmielewski, M. Harasimowicz, B. Tyminski, and G. Zakrzewska-Trznadel,Concentration of low-and medium-level radioactive wastes with three-stage reverse osmosis pilot plant. Sep. Sci. Technol .,36 (2001) 1117-1127.doi: https://doi.org/10.1081/SS-100103640
[20] MacNaughton, S.J., McCulloch, J.K., Marshall, K. and Ring, R.J., Application of nanofiltration to the treatment of uranium mill effluents (No. IAEA-TECDOC-1296).Vienna,2002. 
[21] O. Raff and R.-D. Wilken, Raff, Oliver, Removal of dissolved uranium by nanofiltration. Desalination .122 (1999) 147-150.doi:https://doi.org/10.1016/S0011-9164(99)00035-1
[22] J. M. A. Arnal, J. M. C. Esteban, J. L. García, M. S. Fernandez, I. I. Clar, and I. A. Miranda, Declassification of radioactive waste solutions of iodine (I125) from radioimmune analysis (RIA) using membrane techniques. Desalination., 129 (2000) 101-105.doi: https://doi.org/10.1016/S0011-9164(00)00053-9
[23] M. Sancho, J. M. Arnal, and B. García-Fayos,Treatment of hospital radioactive liquid wastes from RIA (radioimmunoassay) by membrane technology. Desalination. 321(2013)110-118.doi:https://doi.org/10.1016/j.desal.2013.03.032
[24] M. Sancho, J. M. Arnal, G. Verdú, J. Lora, and J. I. Villaescusa, Ultrafiltration and reverse osmosis performance in the treatment of radioimmunoassay liquid wastes. Desalination ., 201(2006) 207-215.doi: https://doi.org/10.1016/j.desal.2006.02.015
[25] Devarakonda, M.S. and Seiler, M.C., 1995. Radioactive wastes. Water environment research, 67 (1995) 585-596.doi: https://www.jstor.org/stable/25044599
[26] V. E. Saouma and M. A. Hariri-Ardebili, A proposed aging management program for alkali silica reactions in a nuclear power plant. Nuclear Engineering and Design., 277 (2014) 248-264.doi: https://doi.org/10.1016/j.nucengdes.2014.06.012
[27] M. J. Konya, K. R. Bryant, and D. L. Hopkins, Power distribution changes caused by subcooled nucleate boiling at Callaway Nuclear Power Plant. In 2nd ASME-JSME international conference on nuclear engineering, RN:25058826, 1993.
[28] George, D.L. and Southwell, P.L., Opinion on the Diablo Canyon nuclear power plant: The effects of situation and socialization. Social Science Quarterly, Austin., 67 (1986) 722.
[29] Herald, W.R. and Roberts, R.C., Development of ultrafiltration and inorganic adsorbents for reducing volumes of low-level and intermediate-level liquid waste.Mound Facility, Miamisburg, OH (USA),1978.
[30] K. Suzuki, M. Hirano, T. Nakashima, R. L. Baker, and P. N. Baldwin,A study of removal of hazardous metals and radionuclides in ground water. In Proc. Waste Management Conf. Tucson, AZ, 1997.
[31] L. P. Buckley, S. Vijayan, and P. C. Wong,Remediation process technology for ground water. No. CONF-930906-. American Society of Mechanical Engineers, New York, NY (United States), 1993.
[32] N. R. Mann and T. A. Todd, Crossflow filtration testing of INEEL radioactive and non-radioactive waste slurries. Chem. Eng. J., 80 (2000) 237-244.doi: https://doi.org/10.1016/S1383-5866(00)00096-4
[33] Brown, R.G., Crowe, M.H., Hebditch, D.J., Newman, R.N. and Smith, K.L., A Comparative Evaluation of Crossflow Microfiltration Membranes for Radwaste Dewatering. In Effective Industrial Membrane Processes: Benefits and Opportunities. Springer, Dordrecht,1991.
[34] D. J. Stepan and M. E. Grafsgaard, Stepan,Task 9-centrifugal membrane filtration. Semi-annual report April 1,September 30, 1996. No. DOE/MC/31388-5500. Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center, 1997.
[35] Lemaire, M., Foos, J., Guy, A., Gaubert, E., Bardot, C., Chomel, R., Radecky, J.J., Maurel, A. and Barnier, H., A process to separate the sodium from radioactive aqueous effluents resulting from spent fuels reprocessing, Institut National de la Propriete Industrielle, Paris, France,1996.
[36] F. Chitry,P-R. Stéphane,N.Laurence,G.Jean-Louis, Jacques,F.G.Alain, and L.Marc, Cesium/sodium separation by nanofiltration-complexation in aqueous medium. Separation Science and Technology ., 36 (2001) 1053-1066.doi: https://doi.org/10.1081/SS-100103636
[37] E. Gaubert et al., Selective strontium removal from a sodium nitrate aqueous medium by nanofiltration-complexation. Separation science and technology., 32 (1997) 585-597.doi: https://doi.org/10.1080/01496399708003217
[38] ED Hwang, KW Lee, KH Choo, SJ Choi, SH Kim,C-H Yoon, and C-H Lee. Effect of precipitation and complexation on nanofiltration of strontium-containing nuclear wastewater. Desalination ., 147 (2002) 289-294.doi: https://doi.org/10.1016/S0011-9164(02)00554-4
[39] G. Zakrzewska-Trznadel, Radioactive solutions treatment by hybrid complexation–UF/NF process. J. Memb. Sci., .225 (2003) 25-39.doi: https://doi.org/10.1016/S0376-7388(03)00261-8
[40] S. Szöke, G. Pátzay, and L. Weiser, Cobalt (III) EDTA complex removal from aqueous alkaline borate solutions by nanofiltration. Desalination., 175 (2005) 179-185.doi: https://doi.org/10.1016/j.desal.2004.09.027
[41] A. Favre-Réguillon, A. Sorin, S. Pellet-Rostaing, G. Bernier, and M. Lemaire, Nanofiltration assisted by complexation: A promising process for the separation of trivalent long-lived minor actinides from lanthanides. Comptes Rendus Chimie, 10 (2007) 994-1000.doi: https://doi.org/10.1016/j.crci.2007.01.012
[42] E.Gaubert, H. Barnier, A. Maurel, J. Foos, A. Guy, C. Bardot, and M. Lemaire. Selective strontium removal from a sodium nitrate aqueous medium by nanofiltration-complexation. Sep.Sci.Technol., 32(1997) 585-597.doi: https://doi.org/10.1080/01496399708003217
[43] K.-H. Choo, D.-J. Kwon, K.-W. Lee, and S.-J. Choi, Selective removal of cobalt species using nanofiltration membranes. Environmental science & technology, 36 (2002) 1330-1336.doi: https://doi.org/10.1021/es010724q
[44] M. G. Khedr, Radioactive contamination of groundwater, special aspects and advantages of removal by reverse osmosis and nanofiltration. Desalination, 321 (2013) 47-54.doi: https://doi.org/10.1016/j.desal.2013.01.013
[45] OLIVEIRA, E.E.D.M., BARBOSA, C.C.R. and AFONSO, J.C. Selectivity of NF membrane for treatment of liquid waste containing uranium.2013.
[46] L. Chen, X. Bian, and X. Lu, Removal of strontium from simulated low-level radioactive wastewater by nanofiltration. Water Sci. Technol., 78 (2018) 1733-1740.doi: https://doi.org/10.2166/wst.2018.455
[47] E. W. Hooper, Activity removal from aqueous waste streams by seeded ultrafiltration. Use of inorganic sorbents for treatment of liquid radioactive waste and backfill of underground repositories, IAEA-TECDOC-675, IAEA., (1992) 69-83.
[48] G. Zakrzewska-Trznadel, Membrane processes for environmental protection: applications in nuclear technology, Nukleonika, 51 (2006) 101–111.
[49] Zakrzewska-Trznadel, G., Harasimowicz, M., Miskiewicz, A. and Jaworska-Sobczak, A. Liquid low-level radioactive waste treatment by membrane processes. MRS Online Proceedings Library (OPL), 1475(2012)64.doi:  https://doi.org/10.1557/opl.2012.643
[50] Smith, B.F., Robison, T.W. and Jarvinen, G.D.Water-soluble metal-binding polymers with ultrafiltration: a technology for the removal, concentration, and recovery of metal ions from aqueous streams.1998.doi:10.1021/bk-1999-0716.ch020
[51] A. Paulenova, P. Rajec, and P. Adamčík, Micellar ultrafiltration preconcentration of strontium by anionic micellar solution. J. Radioanal. Nucl. Chem., 228 (1998) 115-117.doi: https://link.springer.com/article/10.1007/BF02387311
[52] S. V. S. Rao, B. Paul, K. B. Lal, S. V Narasimhan, and J. Ahmed, Effective removal of cesium and strontium from radioactive wastes using chemical treatment followed by ultra filtration. Journal of Radioanalytical and Nuclear Chemistry, 246 (2000) 413-418.doi: https://link.springer.com/article/10.1023/A:1006771918337
[53] T. T. H. Dang, C.-W. Li, and K.-H. Choo, Comparison of low-pressure reverse osmosis filtration and polyelectrolyte-enhanced ultrafiltration for the removal of Co and Sr from nuclear plant wastewater. Separation and Purification Technology., 157 (2016) 209-214.doi: https://doi.org/10.1016/j.seppur.2015.11.019
[54] Vijayan, S., Wong, C.F. and Buckley, L.P., US Department of Energy. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering. U.S.A,1994.
[55] L. Wu, J. Cao, Z. Wu, J. Zhang, and Z. Yang, The mechanism of radioactive strontium removal from simulated radioactive wastewater via a coprecipitation microfiltration process. Journal of Radioanalytical and Nuclear Chemistry ., 314 (2017) 1973-1981.doi:doi. 10.1007/s10967-017-5570-x
[56] A. Subramani and J. G. Jacangelo, Emerging desalination technologies for water treatment: a critical review. Water research., 75 (2015) 164-187.doi: https://doi.org/10.1016/j.watres.2015.02.032
[57] J. Flouret, Y. Barré, H. Muhr, and E. Plasari, Design of an intensified coprecipitation reactor for the treatment of liquid radioactive wastes. Chemical engineering science., 77 (2012) 176-183.doi: https://doi.org/10.1016/j.ces.2012.01.051
[58] X. Luo, G. Zhang, X. Wang, and P. Gu, Research on a pellet co-precipitation micro-filtration process for the treatment of liquid waste containing strontium, J. Radioanal. Nucl. Chem., 298 (2013) 931–939.
[59] J.-G. Cao, P. Gu, J. Zhao, D. Zhang, and Y. Deng, Research on a pellet co-precipitation micro-filtration process for the treatment of liquid waste containing strontium. Journal of Radioanalytical and Nuclear Chemistry ., 298 (2013) 931-939.doi: https://doi.org/10.1007/s10967-010-0564-y
[60] Y. Xu, P. Gu, G. Zhang, and X. Wang, Investigation of coagulation as a pretreatment for microfiltration in cesium removal by copper ferrocyanide adsorption. Journal of Radioanalytical and Nuclear Chemistry., 313 (2017) 435-444.doi:doi10.1007/s10967-017-5337-4
[61] L. Wu, G. Zhang, Q. Wang, and P. Gu, Wu, Removal of strontium from liquid waste using a hydraulic pellet co-precipitation microfiltration (HPC-MF) process. Desalination ., 349 (2014) 31-38.doi: https://doi.org/10.1016/j.desal.2014.06.020
[62] M. Dulama, M. Pavelescu, N. Deneanu, and C. N. Dulama, Application of indigenous inorganic sorbents in combination with membrane technology for treatment of radioactive liquid waste from decontamination processes. Radiochimica Acta., 98 (2010) 413-420.doi: https://doi.org/10.1524/ract.2010.1739
[63] G. Zakrzewska-Trznadel and M. Harasimowicz, Removal of radionuclides by membrane permeation combined with complexation. Desalination., 144 (2002) 207-212.doi: https://doi.org/10.1016/S0011-9164(02)00313-2
[64] M.-L. Luo, J.-Q. Zhao, W. Tang, and C.-S. Pu,Luo, Ming-Liang, Jian-Qing Zhao, Wu Tang, and Chun-Sheng Pu. Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Applied Surface Science ., 249(2005) 76-84.doi: https://doi.org/10.1016/j.apsusc.2004.11.054
[65] W. Choi, A. Termin, and M. R. Hoffmann,The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry .98 (2002) 13669-13679.doi: https://doi.org/10.1021/j100102a038
[66] T.-H. Bae and T.-M. Tak, Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. Journal of Membrane Science ., 249 (2005) 1-8.doi: https://doi.org/10.1016/j.memsci.2004.09.008
[67] Y. Mansourpanah, S. S. Madaeni, A. Rahimpour, A. Farhadian, and A. H. Taheri, Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: performance, characterization and fouling-resistant capability. Journal of Membrane Science ., 330 (2009) 297-306.doi: https://doi.org/10.1016/j.memsci.2009.01.001
[68] B. Moermans, W. De Beuckelaer, I. F. J. Vankelecom, R. Ravishankar, J. A. Martens, and P. A. Jacobs, Incorporation of nano-sized zeolites in membranes. Chemical Communications ., 24 (2000) 2467-2468.doi:https://doi.org/10.1039/B007435G
[69] S. Yu, X. Zuo, R. Bao, X. Xu, J. Wang, and J. Xu,Yu, Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane. Polymer ., 50 (2009) 553-559.doi: https://doi.org/10.1016/j.polymer.2008.11.012
[70] J. Ahn, W.-J. Chung, I. Pinnau, and M. D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. Journal of Membrane science ., 314 (2008) 123-133.doi: https://doi.org/10.1016/j.memsci.2008.01.031
[71] N. Maximous, G. Nakhla, W. Wan, and K. Wong, Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration. Journal of Membrane Science ., 341(2009)67-75.doi: https://doi.org/10.1016/j.memsci.2009.05.040
[72] M. Sadeghi, M. A. Semsarzadeh, and H. Moadel, Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles. J. Membr. Sci., 331 (2009)21-30.doi: https://doi.org/10.1016/j.memsci.2008.12.073
[73] Q. Hu, E. Marand, S. Dhingra, D. Fritsch, J. Wen, and G. Wilkes, Poly (amide-imide)/TiO2 nano-composite gas separation membranes: Fabrication and characterization. Journal of Membrane Science ., 135 (1997) 65-79.doi: https://doi.org/10.1016/S0376-7388(97)00120-8
[74] L. Yu, H. Shen, and Z. Xu, PVDF–TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol–gel method and blending method. Journal of Applied Polymer Science ., 113 (2009)1763-1772.doi:  https://doi.org/10.1002/app.29886
[75] Y. Yang, H. Zhang, P. Wang, Q. Zheng, and J. Li, The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. Journal of Membrane Science., 288 (2007) 231-238.doi: https://doi.org/10.1016/j.memsci.2006.11.019
[76] J. Schaep, C. Vandecasteele, R. Leysen, and W. Doyen, Salt retention of Zirfon® membranes. Separation and purification technology., 14 (1998) 127-131.doi: https://doi.org/10.1016/S1383-5866(98)00067-7
[77] B. Gilbert, R. K. Ono, K. A. Ching, and C. S. Kim, The effects of nanoparticle aggregation processes on aggregate structure and metal uptake. Journal of colloid and interface science ., 339 (2009) 285-295.doi: https://doi.org/10.1016/j.jcis.2009.07.058
[78] M.Sajid, S-J. Yun, J-E.Yang, S-W.Jeong, H.E. Shim, M.H.Choi, S. H.Park, Y.J.Choi, and J. Jeon. Efficient and selective removal of radioactive iodine anions using engineered nanocomposite membranes. Environmental Science: Nano ., 4 (2017) 2157-2163.doi: https://doi.org/10.1039/C7EN00759K
[79] J. He, T. Matsuura, and J. P. Chen, He, A novel Zr-based nanoparticle-embedded PSF blend hollow fiber membrane for treatment of arsenate contaminated water: material development, adsorption and filtration studies, and characterization. Journal of membrane science ., 452 (2014) 433-445.doi: https://doi.org/10.1016/j.memsci.2013.10.041
[80] N. Ghaemi, S. Zereshki, and S. Heidari, Removal of lead ions from water using PES-based nanocomposite membrane incorporated with polyaniline modified GO nanoparticles: Performance optimization by central composite design. Process Safety and Environmental Protection, 111 (2017) 475-490.doi: https://doi.org/10.1016/j.psep.2017.08.011
[81] Y. Yurekli, Yurekli, Yilmaz. Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes. Journal of hazardous materials, 309 (2016)5 3-64.doi: https://doi.org/10.1016/j.jhazmat.2016.01.064
[82] T.Wen, , Z. Zhiwei, S. Congcong, L. Jiaxing, T. Xiaoli, Z.Akif, W. Xiangke, and X. An-Wu. Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive 90Sr2+ and 137Cs+ ions and oils. Scientific reports., 6 (2016) 1-10.doi: doi: 10.1038/srep20920
[83] H. Rai and M. Kawabata, The dynamics of radio-cesium in soils and mechanism of cesium uptake into higher plants: newly elucidated mechanism of cesium uptake into rice plants. Frontiers in Plant Science ., 11 (2020) 528.doi: https://doi.org/10.3389/fpls.2020.00528
[84] H. Wi, H. Kim, D. Oh, S. Bae, and Y. Hwang, Surface modification of poly (vinyl alcohol) sponge by acrylic acid to immobilize Prussian blue for selective adsorption of aqueous cesium. Chemosphere ., 226 (2019) 173-182.doi: https://doi.org/10.1016/j.chemosphere.2019.03.101
[85] R. Saberi, S. Sadjadi, S. Ammari Allahyari, and A. Charkhi, Saberi, Poly (ε-caprolactone) electrospun nanofibers decorated with copper hexacyanoferrate as an ion exchanger for effective cesium ion removal. Separation Science and Technology ., 57 (2022) 897-909.doi: https://doi.org/10.1080/01496395.2021.1955268
[86] Z. Jia, X. Cheng, Y. Guo, and L. Tu, In-situ preparation of iron (III) hexacyanoferrate nano-layer on polyacrylonitrile membranes for cesium adsorption from aqueous solutions. Chemical Engineering Journal., 325 (2017) 513-520.doi: https://doi.org/10.1016/j.cej.2017.05.096
[87] S. Ali, I. A. Shah, and H. Huang, Selectivity of Ar/O2 plasma-treated carbon nanotube membranes for Sr (II) and Cs (I) in water and wastewater: Fit-for-purpose water treatment. Separation and Purification Technology ., 237 (2020) 116352.doi: https://doi.org/10.1016/j.seppur.2019.116352
[88] Q. F. Alsalhy, J. M. Ali, A. A. Abbas, A. Rashed, B. Van der Bruggen, and S. Balta Enhancement of poly (phenyl sulfone) membranes with ZnO nanoparticles. Desalination and Water Treatment ., 51(2013)6070-6081.doi: https://doi.org/10.1080/19443994.2013.764487
[89] F. H. Al-Ani, Q. F. Alsalhy, R. S. Raheem, K. T. Rashid, and A. Figoli,"Experimental investigation of the effect of implanting tio2-nps on pvc for long-term uf membrane performance to treat refinery wastewater." Membranes., 10 (2020): 77.doi: https://doi.org/10.3390/membranes10040077
[90] M. Rezakazemi, K. Shahidi, and T. Mohammadi, Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. international journal of hydrogen energy ., 37 (2012) 14576-14589.doi: https://doi.org/10.1016/j.ijhydene.2012.06.104
[91] R. J. Kadhim, F. H. Al-Ani, M. Al-Shaeli, Q. F. Alsalhy, and A. Figoli, Removal of dyes using graphene oxide (GO) mixed matrix membranes. Membranes ., 10 (2020) 366.doi: https://doi.org/10.3390/membranes10120366
[92] J. Ayyavoo, T. P. N. Nguyen, B.-M. Jun, I.-C. Kim, and Y.-N. Kwon, Protection of polymeric membranes with antifouling surfacing via surface modifications. Colloids and Surfaces A: Physicochemical and Engineering Aspects ., 506 (2016) 190-201.doi: https://doi.org/10.1016/j.colsurfa.2016.06.026
[93] J. H. Jhaveri and Z. V. P. Murthy, A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination., 379 (2016) 137-154.doi: https://doi.org/10.1016/j.desal.2015.11.009
[94] S. Ding, Y. Yang, C. Li, H. Huang, and L. Hou, The effects of organic fouling on the removal of radionuclides by reverse osmosis membranes. Water Research ., 95 (2016) 174-184.doi: https://doi.org/10.1016/j.watres.2016.03.028
[95] Q. F. Alsalhy, F. H. Al-Ani, A. E. Al-Najar, and S. I. A. Jabuk, A study of the effect of embedding ZnO-NPs on PVC membrane performance use in actual hospital wastewater treatment by membrane bioreactor. Chemical Engineering and Processing-Process Intensification ., 130 (2018) 262-274.doi: https://doi.org/10.1016/j.cep.2018.06.019
[96] S. Yu, X. Zhang, F. Li, and X. Zhao, Poly (vinyl pyrrolidone) modified poly (vinylidene fluoride) ultrafiltration membrane via a two-step surface grafting for radioactive wastewater treatment. Separation and purification technology., 194 (2018) 404-409.doi: https://doi.org/10.1016/j.seppur.2017.10.051
[97] IAEA.Treatment and conditioning of radioactive organic liquids. IAEA, Vienna, 1992.
[98] IAEA. Advances in technologies for the treatment of low and intermediate level radioactive liquid wastes. Internat. Atomic Energy Agency, Vienna, 1994.
[99] Lee, W.E., Ojovan, M.I. and Jantzen, C.M. eds. Radioactive waste management and contaminated site clean-up: Processes, technologies and international experience. Oxford, UK, 2013.
[100] Basile, A., Cassano, A. and Rastogi, N.K. eds. Advances in membrane technologies for water treatment: materials, processes and applications. Oxford, UK, 2015.