Document Type : Review Paper


1 University of Technology

2 Air Conditioning Engineering Department, Faculty of Engineering, Warith Al-Anbiyaa University, Iraq

3 Mechanical Engineering Department, University of Technology, Baghdad, Iraq.

4 4Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt

5 Mechanical Engineering Dep., Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt

6 1. Mechanical Engineering Dep., College of Engineering, Prince Sattam bin Abdulaziz University, KSA. 2. Faculty of Engineering, Tanta University, Tanta, Egypt.

7 Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt.


Due to the rising demand for treated water, the enhancement of potable water yield technologies, such as traditional solar distillers, is a pressing concern. Solar desalination is one of the easiest techniques for producing fresh water from salt water. It has several benefits, not the least. It utilizes free solar energy. Moreover, it is a simple and inexpensive technique compared to other alternatives. They are, nevertheless, relatively inefficient devices. Many studies have been done to boost the daily output of solar stills by using many active strategies to produce a large amount of evaporation and condensation compared to a basic standard type distiller.  The magnetic field (MF) is one of the most important and recent techniques affecting the productivity of the solar still due to its positive impact on the water evaporation rate. The primary focus of the current study is to review the effects of magnetic field approaches on the distillate production, performance, and thermal efficiency of several types of solar distillers. Based on previous studies, the magnetic field is responsible for increasing the partial pressure difference between water and glass cover. The change occurs in the hydration shells of the saltwater, which should enhance the evaporation rate and improve the performance of solar still. Besides, the magnetic field significantly reduces the surface tension of salty water, which leads to increased evaporation. Furthermore, the intensity, direction, position, and magnet sizes of magnetic have a strong effect on the rate of water evaporation as well as the rate of heat transfer.

Graphical Abstract


  • A complete survey on the factors that affect the performance of solar pyramid stills is explained.
  • Specific categorization of these factors is suggested.
  • Solar radiation is the strongest affecting parameter on the pyramid solar distiller performance.
  • Promising future scopes of work on the pyramid solar still is suggested.


Main Subjects

[1] P. H. Gleick, Water in crisis: Paths to sustainable water use, Ecol. Appl., 8 (1998) 571–579.
[2] M. Qadir, B. R. Sharma, A. Bruggeman, R. Choukr-Allah, and F. Karajeh, Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries, Agric. Water Manag., 87 (2007) 2–22, doi: 10.1016/j.agwat.2006.03.018.
[3] K. H. S. Al-Zaedy, Experimental Study on Enhancement of Single-Basin Solar Still Using Dye Solutions, Tech. J., 30 (2012) 3112–3125, [Online]. Available:
[4] W. H. Alawee, A. S. Abdullah, S. A. Mohammed, H. A. Dhahad, Z. M. Omara, and F. A. Essa, Augmenting the distillate yield of cords pyramid distiller with baffles within compartments, J. Clean. Prod., 356 (2022) 131761, doi: 10.1016/j.jclepro.2022.131761.
[5] L. M. Flendrig, B. Shah, N. Subrahmaniam, and V. Ramakrishnan, Low cost thermoformed solar still water purifier for D&E countries, Phys. Chem. Earth, 34 (2009) 50–54, doi: 10.1016/j.pce.2008.03.007.
[6] S. Manju and N. Sagar, Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India, Renew. Sustain. Energy Rev., 73 (2017) 594–609, doi: 10.1016/j.rser.2017.01.164.
[7] W. H. Alawee, Improving the productivity of single effect duople slope solar still by simple modification, Eng. Technol., 21 (2015).
[8] G. Franchini and A. Perdichizzi, Modeling of a solar driven HD (humidification-dehumidification) desalination system, Energy Procedia, 45 (2014) 588–597, doi: 10.1016/j.egypro.2014.01.063.
[9] A. Z. Al-Garni, Enhancing the solar still using immersion type water heater productivity and the effect of external cooling fan in winter1, Appl. Sol. Energy (English Transl. Geliotekhnika), 48 (2012) 193–200, doi: 10.3103/S0003701X12030048.
[10] G. M. Salman, Removal of Nitrate from Contaminated Groundwater using Membrane Distillation Desalination Process by, 37 (2017) 24–28.
[11] IDA, International Desalination Association Releases Latest Statistics on Desalination Market, 2016, [Online]. Available:
[12] F. A. Essa, Thermal Desalination Systems: From Traditionality to Modernity and Development, Distill. Process. - From Conv. to React. Distill. Model. Simul. Optim. [Working Title] 2022, doi: 10.5772/intechopen.101128.
[13] P. Dumka, Y. Kushwah, A. Sharma, and D. R. Mishra, Comparative analysis and experimental evaluation of single slope solar still augmented with permanent magnets and conventional solar still, Desalination, 459 (2019) 34–45, doi: 10.1016/j.desal.2019.02.012.
[14] A. E. Kabeel, M. H. Hamed, and Z. M. Omara, Augmentation of the basin type solar still using photovoltaic powered turbulence system, Desalin. Water Treat., 48 (2012) 182–190, doi: 10.1080/19443994.2012.698811.
[15] A. A. El-Sebaii, On effect of wind speed on passive solar still performance based on inner/outer surface temperatures of the glass cover, Energy, 36 (2011) 4943–4949, doi: 10.1016/
[16] M. Fathy, H. Hassan, and M. S. Ahmed, Experimental study on the e ff ect of coupling parabolic trough collector with double slope solar still on its performance, Sol. Energy, 163 (2018) 54–61, doi: 10.1016/j.solener.2018.01.043.
[17] J. P. Gnanaraj, “An experimental study on the efficacy of modifications in enhancing the performance of single basin double slope solar still.”
[18] H. S. Aybar, A review of desalination by solar still, NATO Secur. through Sci. Ser. C Environ. Secur., 2007, doi: 10.1007/978-1-4020-5508-9_15.
[19] H. Mohammed Ali and S. Ahmed, Physical and Chemical Characteristics Comparison of the Drinking Water and Water Produced from the Conventional and Modification Solar Water Distillery, Eng. Technol. J., 37 (2019) 214–221, doi: 10.30684/etj.37.6a.5.
[20] T. Rajaseenivasan, K. K. Murugavel, T. Elango, and R. S. Hansen,  review of different methods to enhance the productivity of the multi-effect solar still, Renew. Sustain. Energy Rev., 17 (2013) 248–259, doi: 10.1016/j.rser.2012.09.035.
[21] T. Z. Farge, K. F. Sultan, and A. M. Ahmed, Experimental Study of the Performance Water Distillation Device by Using Solar Energy, Eng. Technol. J., 35 (2017) 653–659.
[22] W. M. Farouk, A. S. Abdullah, S. A. Mohammed, W. H. Alawee, Z. M. Omara, and F. A. Essa, Modeling and optimization of working conditions of pyramid solar still with different nanoparticles using response surface methodology, Case Stud. Therm. Eng., 33 (2022) 101984, doi: 10.1016/j.csite.2022.101984.
[23] K. Selvaraj and A. Natarajan, Factors influencing the performance and productivity of solar stills - A review, Desalination, 435 (2018) 181–187, doi: 10.1016/j.desal.2017.09.031.
[24] A. Jafar Gholi Beik, M. R. Assari, and H. Basirat Tabrizi, Passive and active performance of a multi-side-stepped square pyramid solar still; experimental and modeling, J. Energy Storage, 32 (2020) 101832, doi: 10.1016/j.est.2020.101832.
[25] A. Nahoui, R. Rebhi, G. Lorenzini, and Y. Menni, Numerical Study of a Basin Type Solar Still with a Double Glass Cover Under Winter Conditions, J. Adv. Res. Fluid Mech. Therm. Sci., 88 (2021) 35–48, doi: 10.37934/arfmts.88.1.3548.
[26] P. V. Kumar, A. Kumar, O. Prakash, and A. Kumar, Solar stills system design : A review, 51 (2015) 153–181, doi: 10.1016/j.rser.2015.04.103.
[27] A. E. Kabeel and S. A. El-Agouz, Review of researches and developments on solar stills, Desalination, 276 (2011) 1–12, doi: 10.1016/j.desal.2011.03.042.
[28] Z. M. Omara, A. S. Abdullah, A. E. Kabeel, and F. A. Essa, The cooling techniques of the solar stills ’ glass covers – A review, Renew. Sustain. Energy Rev., 78 (2017) 176–193, doi: 10.1016/j.rser.2017.04.085.
[29] B. Janarthanan, J. Chandrasekaran, and S. Kumar, Performance of floating cum tilted-wick type solar still with the effect of water flowing over the glass cover, Desalination, 190 (2006) 51–62, doi: 10.1016/j.desal.2005.08.005.
[30] S. S. Tuly, M. R. I. Sarker, B. K. Das, and M. S. Rahman, Groundwater for Sustainable Development Effects of design and operational parameters on the performance of a solar distillation system : A comprehensive review, Groundw. Sustain. Dev., 14 (2021) 100599, doi: 10.1016/j.gsd.2021.100599.
[31] S. E. Colesca and L. Dobrica, Journal of applied research and technology., J. Appl. Res. Technol., 6 (2008) 204–217, [Online]. Available:
[32] A. K. Singh and Samsher, A review study of solar desalting units with evacuated tube collectors, J. Clean. Prod., 279 (2021) 123542, doi: 10.1016/j.jclepro.2020.123542.
[33] E. Zamfir, C. Oancea, and V. Badescu, Cloud cover influence on long-term performances of flat plate solar collectors, Renew. Energy, 4 (1994) 339–347, doi: 10.1016/0960-1481(94)90038-8.
[34] A. M. El-Nashar, The effect of dust accumulation on the performance of evacuated tube collectors, Sol. Energy, 53 (1994) 105–115, doi: 10.1016/S0038-092X(94)90610-6.
[35] S. S. Tuly, M. S. Rahman, M. R. I. Sarker, and R. A. Beg, Combined influence of fin, phase change material, wick, and external condenser on the thermal performance of a double slope solar still, J. Clean. Prod., 287 (2021) 125458, doi: 10.1016/j.jclepro.2020.125458.
[36] K. A. Hammoodi, H. A. Hasan, M. H. Abed, A. Basem, and A. M. Al-tajer, Jo ur l P re f, Results Eng., 2022, doi: 10.1016/j.rineng.2022.100471.
[37] A. Muthu Manokar et al., Integrated PV/T solar still- A mini-review, Desalination, 435 (2018) 259–267, doi: 10.1016/j.desal.2017.04.022.
[38] A. Alhamadani, Experimental Study of Multi Effect stages PV Panels Solar Still to Enhance the Productivity by …‏ AAF Al-Hamadani, AH Yaseen‏, 2019.
[39] A. A. El-Sebaii, A. A. Al-Ghamdi, F. S. Al-Hazmi, and A. S. Faidah, Thermal performance of a single basin solar still with PCM as a storage medium, Appl. Energy, 86 (2009) 1187–1195, doi: 10.1016/j.apenergy.2008.10.014.
[40] G. Oxide, Solar Still E ffi ciency Enhancement by Using Graphene Oxide / Para ffi n Nano-PCM, 2019, [Online]. Available:
[41] F. Agyenim, N. Hewitt, P. Eames, and M. Smyth, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), Renew. Sustain. Energy Rev., 14 (2010) 615–628, doi: 10.1016/j.rser.2009.10.015.
[42] R. H. Mohammed and A. A. Askalany, Productivity improvements of adsorption desalination systems. 2019.
[43] L. Holysz, A. Szczes, and E. Chibowski, Effects of a static magnetic field on water and electrolyte solutions, J. Colloid Interface Sci., 316 (2007) 996–1002, doi: 10.1016/j.jcis.2007.08.026.
[44] M. Dubey and D. R. Mishra, Experimental evaluation of double slope solar still augmented with ferrite ring magnets and a black cotton cloth, Int. J. Ambient Energy, 0 (2020) 1–26, doi: 10.1080/01430750.2020.1722746.
[45] R. Dhivagar, Performance enhancement of a solar still using magnetic powder as an energy storage medium ‐ exergy and environmental analysis, 2022, doi: 10.1002/ese3.1210.
[46] F. Selimefendigil and H. F. Öztop, International Journal of Heat and Mass Transfer Thermal management and performance improvement by using coupled effects of magnetic field and phase change material for hybrid nanoliquid convection through a 3D vented cylindrical cavity, Int. J. Heat Mass Transf., 183 (2022) 122233, doi: 10.1016/j.ijheatmasstransfer.2021.122233.
[47] C. T. Rodgers, Magnetic field effects in chemical systems, Pure Appl. Chem., 81 (2009) 19–43, doi: 10.1351/PAC-CON-08-10-18.
[48] A. Alabi, M. Chiesa, C. Garlisi, and G. Palmisano, Advances in anti-scale magnetic water treatment, Environ. Sci. Water Res. Technol., 1 (2015) 408–425, doi: 10.1039/c5ew00052a.
[49] N. S. Zaidi, J. Sohaili, K. Muda, and M. Sillanpää, Magnetic field application and its potential in water and wastewater treatment systems, Sep. Purif. Rev., 43 (2014) 206–240, doi: 10.1080/15422119.2013.794148.
[50] E. J. L. Toledo, T. C. Ramalho, and Z. M. Magriotis, Influence of magnetic field on physical-chemical properties of the liquid water: Insights from experimental and theoretical models, J. Mol. Struct., 888 (2008) 409–415, doi: 10.1016/j.molstruc.2008.01.010.
[51] R. Cai, H. Yang, J. He, and W. Zhu, The effects of magnetic fields on water molecular hydrogen bonds, J. Mol. Struct., 938 (2009) 15–19, doi: 10.1016/j.molstruc.2009.08.037.
[52] H. Ben Amor, A. Elaoud, N. Ben Salah, and K. Elmoueddeb, Effect of Magnetic Treatment on Surface Tension and Water Evaporation, Int. J. Adv. Ind. Eng., 5 (2013) 119–124, doi: 10.14741/ijae/5.3.4.
[53] Y. Wang, H. Wei, and Z. Li, Results in Physics Effect of magnetic field on the physical properties of water, Results Phys., 8 (2018) 262–267, doi: 10.1016/j.rinp.2017.12.022.
[54] X. F. Pang and D. Bo, The changes of macroscopic features and microscopic structures of water under influence of magnetic field, Phys. B Condens. Matter, 403 (2008) 3571–3577, doi: 10.1016/j.physb.2008.05.032.
[55] X. F. Pang and B. Deng, Investigation of changes in properties of water under the action of a magnetic field, Sci. China, Ser. G Physics, Mech. Astron., 51 (2008) 1621–1632, doi: 10.1007/s11433-008-0182-7.
[56] M. C. Amiri and A. A. Dadkhah, On reduction in the surface tension of water due to magnetic treatment, Colloids Surfaces A Physicochem. Eng. Asp., 278 (2006) 252–255, doi: 10.1016/j.colsurfa.2005.12.046.
[57] S. H. Wu, Y. L. Sun, and S. Y. Jia, Effects of magnetic field on evaporation of distilled water, Shiyou Huagong Gaodeng Xuexiao Xuebao/Journal Petrochemical Univ., 19 (2006) 2022.
[58] A. Seyfi, R. Afzalzadeh, and A. Hajnorouzi, Increase in water evaporation rate with increase in static magnetic field perpendicular to water-air interface, Chem. Eng. Process. Process Intensif., 120 (2017) 195–200, doi: 10.1016/j.cep.2017.06.009.uary, pp.
[59] Y. Z. Guo et al., Evaporation rate of water as a function of a magnetic field and field gradient, Int. J. Mol. Sci., 13 (2012) 16916–16928, 2012, doi: 10.3390/ijms131216916.
[60] P. Dumka, Y. Kushwah, A. Sharma, and D. R. Mishra, Comparative analysis and experimental evaluation of single slope solar still augmented with permanent magnets and conventional solar still, Desalination, 459 (2019) 34–45, doi: 10.1016/j.desal.2019.02.012.
[61] A. K. Kaviti, A. S. Ram, and A. K. Thakur, Influence of fully submerged permanent magnets in the evaluation of heat transfer and performance analysis of single slope glass solar still, Proc. Inst. Mech. Eng. Part A J. Power Energy, 236 (2022) 109–123, doi: 10.1177/09576509211031021.
[62] M. Dubey and D. R. Mishra, Thermo-exergo-economic analysis of double slope solar still augmented with ferrite ring magnets and gi sheet, Desalin. Water Treat., 198 (2020) 19–30, doi: 10.5004/dwt.2020.25947.
[63] R. Dhivagar and M. Mohanraj, Performance improvements of single slope solar still using graphite plate fins and magnets, Environ. Sci. Pollut. Res., 28 (2021) 20499–20516, doi: 10.1007/s11356-020-11737-5.
[64] M. Mehdizadeh Youshanlouei, S. Yekani Motlagh, and H. Soltanipour, The effect of magnetic field on the performance improvement of a conventional solar still: a numerical study, Environ. Sci. Pollut. Res., 28 (2021) 31778–31791, doi: 10.1007/s11356-021-12947-1.
[65] R. Dhivagar, M. Mohanraj, P. Raj, and R. K. Gopidesi, Thermodynamic analysis of single slope solar still using graphite plates and block magnets at seasonal climatic conditions, Water Sci. Technol., 84 (2021), no. 10–11, pp. 2635–2651, doi: 10.2166/wst.2021.156.
[66] R. Dhivagar, M. Mohanraj, B. Deepanraj, and V. S. Murugan, Assessment of single slope solar still using block and disc magnets via productivity, economic, and enviro-economic perspectives: a comparative study, Environ. Sci. Pollut. Res., no. 2021, doi: 10.1007/s11356-021-15565-z.