Document Type : Review Paper

Authors

1 Department of Industrial and Process Chemistry Higher Institute of Applied Science and Technology of Gabes Tunisia University of Gabes Omar Ibn. ElKhattab St. 6029 Gabes, Tunisia

2 Maintenance training sectoral center, El Manara B.P 66, 6011 Gabes Tunisia

3 Hollingsworth & Vose, 289 Park View Road, 4091 Floyd Virginia, US

4 Laboratory of Energy, Water, Environment and Process, LR18ES35, National Engineering School of Gabes, University of Gabes, 6072 Gabes, Tunisia

Abstract

The production of straight and helical hollow fibers plays an important role in developing hollow fiber membrane technology that encompasses a broad range of designs. During the last two decades, scientific studies devoted to straight hollow fibers were more abundant than those focused on helical fibers. Several major applications considering side-by-side testing of these two geometries are discussed in this review. For membrane extraction, desalination, and membrane contactor processes, it is observed that permeability rates are 10%-400 % higher for helical fibers compared to straight fibers. This outcome is justified by the presence of Dean-vortices-induced flow turbulences inherent to the geometry of helical membranes. These conditions give rise to an uptake of mass and heat transfer coefficients and a reduction of temperature and concentration polarization phenomena.  Aside from enhanced flow properties, helical hollow fiber bundles tend to be more robust by design, thus exhibiting better resiliency over long service operations than straight bundles. One persistent shortcoming of the helical fibers seems to be an increase in pressure drop. However, this does not always translate into a higher energy consumption – i.e., versus straight bundles. Given the performance advantage, product robustness, and adaptiveness to a broad range of applications, the adoption of helical hollow fiber technology deserves growing support from the membrane community in academic and industrial settings.

Graphical Abstract

Highlights

  • A comprehensive comparison was performed between helical and straight hollow fibers.
  • Applications of helical hollow fibers membrane were studied.
  • The use of helical fibers minimizes fouling and concentration polarization.
  • Helical configuration promotes turbulence.

Keywords

Main Subjects

[1] M.S. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, J. Membr. Sci. 285 (2006) 4–29.
[2] J. Phattaranawik, R. Jiraratananon, Direct contact membrane distillation: effect of mass transfer on heat transfer, J. Membr. Sci. 188 (2001) 137–143.
[3] Z. Xu, Y. Pan, Y. Yu, CFD simulation on membrane distillation of NaCl solution, Front. Chem. Eng. China. 3 (2009) 293–297.
[4] A. Zrelli, B. Chaouachi, Modeling and simulation of a vacuum membrane distillation plant coupled with solar energy and using helical hollow fibers, Braz. J. Chem. Eng. 36 (2019) 1119–1129.
[5] S.S. Ibrahim, Theoretical Study of the Effective Parameters for Direct Contact Membrane Distillation in Hollow Fiber Modules, Mater Sci. 32 (2014) 2949–2969.
[6] E. Drioli, A. Ali, F. Macedonio, Membrane distillation: Recent developments and perspectives, Desalination. 356 (2015) 56–84.
[7] H. Ajari, A. Zrelli, B. Chaouachi, M. Pontié, Preparation and Characterization of Hydrophobic Flat Sheet Membranes Based on a Recycled Polymer, Int. Polym. Process. 34 (2019) 376–382.
[8] L. Zarybnicka, E. Stranska, Verification Stability of Anion-Exchange Membrane with Surface Modification with Application in Electrodialysis Process, Period. Polytech. Chem. Eng. 63 (2019) 51–56.
[9] R.I. da Silva, K.C. de Souza Figueiredo, Incorporation of graphene oxide on thin film composite polysulfone/polyamide membranes, Braz. J. Chem. Eng. (2021) 1–7.
[10] C. Ying Shi, L.L. Hui Ting, O. Boon Seng, Membrane distillation for water recovery and its fouling phenomena, J. Membr. Sci. Res. 6 (2020) 107–124.
[11] J. Balster, M.H. Yildirim, D.F. Stamatialis, R. Ibanez, R.G. Lammertink, V. Jordan, M. Wessling, Morphology and microtopology of cation-exchange polymers and the origin of the overlimiting current, J. Phys. Chem. B. 111 (2007) 2152–2165.
[12] N. Tzanetakis, K. Scott, W.M. Taama, R.J.J. Jachuck, Mass transfer characteristics of corrugated surfaces, Appl. Therm. Eng. 24 (2004) 1865–1875.
[13] X. Yang, R. Wang, A.G. Fane, C.Y. Tang, I.G. Wenten, Membrane module design and dynamic shear-induced techniques to enhance liquid separation by hollow fiber modules: a review, Desalination Water Treat. 51 (2013) 3604–3627.
[14] C.F. Wan, T. Yang, G.G. Lipscomb, D.J. Stookey, T.-S. Chung, Design and fabrication of hollow fiber membrane modules, J. Membr. Sci. 538 (2017) 96–107.
[15] D. Li, R. Wang, T.-S. Chung, Fabrication of lab-scale hollow fiber membrane modules with high packing density, Sep. Purif. Technol. 40 (2004) 15–30.
[16] A. Gabelman, S.-T. Hwang, Hollow fiber membrane contactors, J. Membr. Sci. 159 (1999) 61–106.
[17] R. Miladi, N. Frikha, S. Gabsi, Modeling and energy analysis of a solar thermal vacuum membrane distillation coupled with a liquid ring vacuum pump, Renew. Energy. 164 (2021) 1395–1407.
[18] A. Zrelli, B. Chaouachi, S. Gabsi, Simulation of a solar thermal membrane distillation: Comparison between linear and helical fibers, Desalination Water Treat. 52 (2014) 1683–1692.
[19] A.H. Al-Fatlawi, G. Abukhanafer, A.A. Salman, Removal of Nitrate from Contaminated Groundwater Using Solar Membrane Distillation, Eng. Technol. J. 37 (2019) 327–332.
[20] C.Z. Liang, M. Askari, L.T.S. Choong, T.-S. Chung, Ultra-strong polymeric hollow fiber membranes for saline dewatering and desalination, Nat. Commun. 12 (2021) 1–12.
[21] E.A. Pradhana, M. Elma, M.H.D. Othman, N. Huda, M.D. Ul-haq, E.L. Rampun, A. Rahma, The functionalization study of PVDF/TiO2 hollow fibre membranes under vacuum calcination exposure, in: J. Phys. Conf. Ser., IOP Publishing, 2021: p. 012035.
[22] M. Altinbas, H. Ozturk, E. İren, Full Scale Sanitary Landfill Leachate Treatment by MBR: Flat Sheet vs. Hollow Fiber Membrane, J. Membr. Sci. Res. 7 (2021) 118–124.
[23] S. Judd, Submerged membrane bioreactors: flat plate or hollow fibre?, Filtr. Sep. 39 (2002) 30–31.
[24] T. Wintgens, J. Rosen, T. Melin, C. Brepols, K. Drensla, N. Engelhardt, Modelling of a membrane bioreactor system for municipal wastewater treatment, J. Membr. Sci. 216 (2003) 55–65.
[25] T. Zhao, Y. Zheng, X. Zhang, D. Teng, Y. Xu, Y. Zeng, Design of helical groove/hollow nanofibers via tri-fluid electrospinning, Mater. Des. 205 (2021) 109705.
[26] M. Li, Z. Zhu, M. Zhou, X. Jie, L. Wang, G. Kang, Y. Cao, Removal of CO2 from biogas by membrane contactor using PTFE hollow fibers with smaller diameter, J. Membr. Sci. 627 (2021) 119232.
[27] A. Zrelli, B. Chaouchi, S. Gabsi, Use of solar energy for desalination by membrane distillation installation equipped with helically coiled fibers, in: IREC2015 Sixth Int. Renew. Energy Congr., IEEE, 2015: pp. 1–4.
[28] D. Wirth, C. Cabassud, Water desalination using membrane distillation: comparison between inside/out and outside/in permeation, Desalination. 147 (2002) 139–145.
[29] H. Mallubhotla, S. Hoffmann, M. Schmidt, J. Vente, G. Belfort, Flux enhancement during dean vortex tubular membrane nanofiltration. 10. Design, construction, and system characterization, J. Membr. Sci. 141 (1998) 183–195.
[30] T. Zeng, L. Deng, J. Chen, H. Huang, H. Zhuang, Numerical Analysis of Conjugated Heat and Mass Transfer of Helical Hollow Fiber Membrane Tube Bank for Seawater Distillation, J. Renew. Mater. 10 (2022) 1845.
[31] M.M. Teoh, S. Bonyadi, T.-S. Chung, Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process, J. Membr. Sci. 311 (2008) 371–379.
[32] A. Ali, P. Aimar, E. Drioli, Effect of module design and flow patterns on performance of membrane distillation process, Chem. Eng. J. 277 (2015) 368–377. https://doi.org/10.1016/j.cej.2015.04.108.
[33] X. Yang, E.O. Fridjonsson, M.L. Johns, R. Wang, A.G. Fane, A non-invasive study of flow dynamics in membrane distillation hollow fiber modules using low-field nuclear magnetic resonance imaging (MRI), J. Membr. Sci. 451 (2014) 46–54.
[34] D.L.M. Mendez, C. Castel, C. Lemaitre, E. Favre, Improved performances of vacuum membrane distillation for desalination applications: Materials vs process engineering potentialities, Desalination. 452 (2019) 208–218.
[35] D.L.M. Mendez, C. Lemaitre, C. Castel, M. Ferrari, H. Simonaire, E. Favre, Membrane contactors for process intensification of gas absorption into physical solvents: Impact of dean vortices, J. Membr. Sci. 530 (2017) 20–32.
[36] A. Dominguez-Tello, A. Dominguez-Alfaro, J.L. Gómez-Ariza, A. Arias-Borrego, T. García-Barrera, Effervescence-assisted spiral hollow-fibre liquid-phase microextraction of trihalomethanes, halonitromethanes, haloacetonitriles, and haloketones in drinking water, J. Hazard. Mater. 397 (2020) 122790.
[37] S.H. Liu, G.S. Luo, Y. Wang, Y.J. Wang, Preparation of coiled hollow-fiber membrane and mass transfer performance in membrane extraction, J. Membr. Sci. 215 (2003) 203–211.
[38] L. Liu, L. Li, Z. Ding, R. Ma, Z. Yang, Mass transfer enhancement in coiled hollow fiber membrane modules, J. Membr. Sci. 264 (2005) 113–121.
[39] Q. Kong, Y. Cheng, L. Wang, X. Li, Mass transfer enhancement in non-dispersive solvent extraction with helical hollow fiber enabling Dean vortices, AIChE J. 63 (2017) 3479–3490.
[40] J. Singh, V. Srivastava, K.D.P. Nigam, Novel membrane module for permeate flux augmentation and process intensification, Ind. Eng. Chem. Res. 55 (2016) 3861–3870.
[41] K. Nagase, F. Kohori, K. Sakai, H. Nishide, Rearrangement of hollow fibers for enhancing oxygen transfer in an artificial gill using oxygen carrier solution, J. Membr. Sci. 254 (2005) 207–217.
[42] D. Kaufhold, F. Kopf, C. Wolff, S. Beutel, L. Hilterhaus, M. Hoffmann, T. Scheper, M. Schlüter, A. Liese, Generation of Dean vortices and enhancement of oxygen transfer rates in membrane contactors for different hollow fiber geometries, J. Membr. Sci. 423 (2012) 342–347.
[43] T. Luelf, M. Tepper, H. Breisig, M. Wessling, Sinusoidal shaped hollow fibers for enhanced mass transfer, J. Membr. Sci. 533 (2017) 302–308.
[44] J.M. Jani, M. Wessling, R.G. Lammertink, Geometrical influence on mixing in helical porous membrane microcontactors, J. Membr. Sci. 378 (2011) 351–358.
[45] S.P. Motevalian, A. Borhan, H. Zhou, A. Zydney, Twisted hollow fiber membranes for enhanced mass transfer, J. Membr. Sci. 514 (2016) 586–594.
[46] N. Al-Bastaki, A. Abbas, Use of fluid instabilities to enhance membrane performance: a review, Desalination. 136 (2001) 255–262.
[47] D.N. Kuakuvi, P. Moulin, F. Charbit, Dean vortices: a comparison of woven versus helical and straight hollow fiber membrane modules, J. Membr. Sci. 171 (2000) 59–65.
[48] H. Yücel, P.Z. Çulfaz-Emecen, Helical hollow fibers via rope coiling: Effect of spinning conditions on geometry and membrane morphology, J. Membr. Sci. 559 (2018) 54–62.
[49] M. Qasim, M. Badrelzaman, N.N. Darwish, N.A. Darwish, N. Hilal, Reverse osmosis desalination: A state-of-the-art review, Desalination. 459 (2019) 59–104.
[50] N. AlSawaftah, W. Abuwatfa, N. Darwish, G. Husseini, A comprehensive review on membrane fouling: Mathematical modelling, prediction, diagnosis, and mitigation, Water. 13 (2021) 1327.
[51] K.C. Baldridge, K. Edmonds, T. Dziubla, J.Z. Hilt, R.E. Dutch, D. Bhattacharyya, Demonstration of Hollow fiber membrane-based enclosed space air remediation for capture of an aerosolized synthetic SARS-CoV-2 mimic and pseudovirus particles, ACS EST Eng. 2 (2022) 251–262.