Document Type : Research Paper

Authors

1 material engineering /university of technology/PhD Student

2 department of martials engineering /university of technology

3 Materials Engineering Department, University of Technology, Baghdad, Iraq.

Abstract

Zirconia toughened alumina (Biolox delta) is a new-generation ceramic with four times the strength of alumina alone, used in artificial joints. The composite ZTA, consisting of 82 wt. %Al2O3, 17 wt. % ZrO2, 0.5 wt. % Cr2O3, and 0.5 wt. % SrO, was made using the sol-gel process, starting with salts. To investigate the effects of MgO on the ZTA microstructure, two concentrations (0.25 and 0.5 wt. %) of MgO were added to biolox during gelation to study the ZTA microstructure. Powders were sintered in the air for 2 hrs. at 1450 ºC. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray analysis (EDX) were used to characterize sintering powders. ZTA + xMgO structural characteristics differ from pure ZTA's.  According to XRD calculations, grainsize decreased from 41.82 nm to 31.88 and 26.83 nm with increasing MgO concentration, but the specific surface area (SSA) increased from 40.63 to 54.79 m2/gm while crystallization improved. SEM examination shows the composite has a homogeneous dispersion of shaped particles. The EDX test shows the composite's homogeneous element distribution. ZTA+ xMgO powders were more antibacterial than ZTA powders. MgO inhibits bacterial activity and grain formation in ZTA composite during sintering, which makes it a good choice for medical applications, mainly artificial joints.

Graphical Abstract

Highlights

  • Synthesis of the ZTA composite using the sol-gel technique starting from salts.
  • The sol-gel technique was used to create a ZTA + xMgO composite starting with salts.
  • With an increase in MgO concentration, the grain size was reduced from 41.82 nm to 31.88 and 26.83 nm, respectively.
  • The antibacterial activity of ZTA improved by adding xMgO.

Keywords

Main Subjects

[1] B. S. Bal, J. P. Garino, and M. D. Ries, Ceramics for Prosthetic Hip and Knee Joint Replacement, J. Am. Ceram. Soc., 90 (2007) 1965–1988, doi: 10.1111/j.1551-2916.2007.01725.x.
[2] S. R. Knight, R. Aujla, and S. P. Biswas, 100 Years of Operative History Er Ci Us E on Er Al, Orthop. Rev., 3 (2011) 72–74, doi: 10.4081/or.2011.16.
[3] H. R. and J. C. Paola Palmero , Laura Montanaro, Surface Coating of Oxide Powders: A New Synthesis Method to Process Biomedical Grade Nano-Composites, Mater. (Basel)., 7 (2014) 5012–5037, doi: 10.3390/ma7075012.
[4] L. I. Podzorova et al., Materials For Ensuring Human Vital Activity Modified Composites Of Al2O3 – (Ce-Tzp ) System As Materials For Medical Use, Inorg. Mater. Appl. Res., 7 (2016) 724–729, doi: 10.1134/S207511331605021X.
[5] D. Sarkar, D. Mohapatra, S. Ray, S. Bhattacharyya, S. Adak, and N. Mitra, Synthesis and characterization of sol – gel derived ZrO2 doped Al2O3 nanopowder, Ceram. Int., 33 (2007), doi: 10.1016/j.ceramint.2006.05.002.
[6] D. J. Hickey, B. Ercan, S. Chung, T. J. Webster, L. Sun, and B. Geilich, MgO nanocomposites as new antibacterial materials for orthopedic tissue engineering applications, Proc. IEEE Annu. Northeast Bioeng. Conf. NEBEC, 2014, doi: 10.1109/NEBEC.2014.6972815.
[7] C. Dauvergne and G. Fantozzi, Microstructural Investigation of the Aging Behavior of (3Y-TZP)–Al2O3 Composites ´, J. Am. Ceram. Soc., 88 (2005) 1273–1280, doi: 10.1111/j.1551-2916.2005.00221.x.
[8] V. Gopal and G. Manivasagam, Zirconia-alumina composite for orthopedic implant application, Applications of Nanocomposite Materials in Orthopedics, Elsevier, (2019) 201–219, doi:10.1016/B978-0-12-813740-6.00011-9.
[9] J. G. Heinrich and C. M. Gomes, Introduction to Ceramics Processing, J. Electrochem. Soc., 124 (1977) 152C.
[10] R. B. Helmann, The colour of medical-grade zirconia ( Y-TZP ), J. Mater. Sci.: materials in medicine, 7 (1996) 559–565.
[11] K. K. Sadhu, S. Mazumder, P. Roy, S. Acharya, and B. Kumar, Synthesis and characterization of calcium fluoride added zirconia toughened alumina composite powder, IOP Conference Series: Mater. Sci. Eng. PAPER, 561 012080  (2019)1-6, doi: 10.1088/1757-899X/561/1/012080.
[12] A. Arab, Z. D. I. Sktani, Q. Zhou, Z. A. Ahmad, and P. Chen, Effect of MgO addition on the mechanical and dynamic properties of zirconia toughened alumina (ZTA) ceramics, Mater. (Basel).,12 (2019) 17–19, doi: 10.3390/ma12152440.
[13] W. Yu, Y. Zheng, Y. Yu, and X. Su, Combustion synthesis assisted water atomization-solid solution precipitation: A new guidance for nano-ZTA ceramics, J. Eur. Ceram. Soc., 39 (2019) 4313–4321, doi: 10.1016/j.jeurceramsoc.2019.05.049.
[14] S. Kim and S. Wohn, Wear and friction behavior of self-lubricating alumina – zirconia – fl uoride composites fabricated by the PECS technique, Ceram. Int., 40 (2014) 779–790, doi: 10.1016/j.ceramint.2013.06.068.
[15] M. Erkin Cura et al., Microstructure and tribological properties of pulsed electric current sintered alumina-zirconia nanocomposites with different solid lubricants, Ceram. Int., 39 (2013) 2093–2105, doi: 10.1016/j.ceramint.2012.08.065.
[16] Z. Tang and B. Lv, MgO nanoparticles as antibacterial agent: preparation and activity, Brazilian J. Chem. Eng., 31 (2014) 591–601, doi: 10.1590/0104-6632.20140313s00002813.
[17] A. Hussain et al., Formation of multifunctional ZrO2–MgO-hBN nanocomposite for enhanced bone regeneration and E coli bacteria filtration applications, Ceram. Int., 46 (2020) 23006–23020, doi: 10.1016/j.ceramint.2020.06.077.
[18] Y. Zhang et al., Effect of MgO doping on properties of low zirconium content Ce-TZP/Al2O3 as a joint replacement material, Ceram. Int., 43 (2017) 2807–2814, doi: 10.1016/j.ceramint.2016.11.122.
[19] C. Y. Tan, A. Yaghoubi, S. Ramesh, S. Adzila, and J. Purbolaksono, Sintering and mechanical properties of MgO-doped nanocrystalline hydroxyapatite, Ceram. Int.,39 (2013) 8979–8983, doi: 10.1016/j.ceramint.2013.04.098.
[20] M. W. Akram et al., In vitro evaluation of the toxic effects of MgO nanostructure in Hela cell line, Sci. Rep., 8 (2017) 1–11, doi: 10.1038/s41598-018-23105-y.
[21] M. Catauro and S. V. Ciprioti, Thermodynamics and Biophysics of Biomedical Nanosystems, Springer Nature Singapore Pte Ltd., 2019, doi.org/10.1007/978-981-13-0989-2_13445.
[22] N. Singh, R. Mazumder, P. Gupta, and D. Kumar, Ceramic matrix composites: Processing techniques and recent advancements, J. Mater. Environ. Sci., 8 (2017) 1654–1660.
[23] D. Bokov et al., Nanomaterial by Sol-Gel Method: Synthesis and Application, Adv. Mater. Sci. Eng., 2021 (2021) 1-21, doi: 10.1155/2021/5102014.
[24] K. Parangusan, In uence of pH on Structural , Morphological , Optical , Photocatalytic , and Antibacterial Properties of Yttrium Oxide Nanoparticles via Co-Precipitation Method, reserch Sq., 2021, doi: doi.org/10.21203/rs.3.rs-385905/v1 License.
[25] D. B. Miracle, F. Scheltens, and P. R. Subramanian, Crystal structure determination of al2ta, Philos. Mag. B Phys. Condens. Matter; Stat. Mech. Electron. Opt. Magn. Prop., 71 (1995) 941–953, doi: 10.1080/01418639508243598.
[26] A. A. Mohammed, Z. T. Khodair, and A. A. Khadom, Preparation and investigation of the structural properties of α -Al2O3 nanoparticles using the sol-gel method, Chem. Data Collect., 29 (2020) 100531, doi: 10.1016/j.cdc.2020.100531.
[27] C. Piconi and G. Maccauro, Zirconia as a ceramic biomaterial, Biomaterials, 20 (1999) 1-25.
[28] J. Safaei-ghomi, S. Zahedi, M. Javid, and M. A. Ghasemzadeh, MgO Nanoparticles : an Efficient , Green and Reusable Catalyst for the One- pot Syntheses of 2 , 6-Dicyanoanilines and 1 , 3-Diarylpropyl Malononitriles, J. Nanostructures, 5 (2015) 153–160, doi: 10.7508/jns.2015.02.010.
[29] C. W. Wong et al., Response Surface Methodology Optimization of Mono-dispersed MgO Nanoparticles Fabricated by Ultrasonic-Assisted Sol–Gel Method for Outstanding Antimicrobial and Antibiofilm Activities, J. Clust. Sci., 31 (2020) 367–389, doi: 10.1007/s10876-019-01651-3.