Document Type : Research Paper

Authors

1 Geomatics Engineering, Civil Engineering, University of Technology, Iraq, Baghdad

2 Civil Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

Abstract

Three-dimensional (3D) real scale models delivered from digital photogrammetric techniques have rapidly increased to meet the requirements of many applications in different fields of daily life. This paper deals with the establishment of a 3D real scale model from a block of images (18 images) that were captured by using Canon EOS 500D digital camera to cover a test field area consisting of 90  artificial target points, 25 of them are ground control points (GCPs) while the remains are checkpoints (CPs). The analytical photogrammetric processes including the calculation of interior orientation parameters (IOPs) of the camera during the camera calibration process, exterior orientation parameters (EOPs) of the camera in each capturing, and the object space (ground) coordinates of the model are calculated simultaneously based on collinearity equation using bundle block adjustment method (BBA). Assessment and validation of the accuracy of the results is an important task in this study that was implemented to determine and analyze the errors of 3D coordinates through linear regression analysis (LRA). Root mean square error (RMSE) is the statistical parameter that was used in the statistical analysis of results. The standard error is another statistical parameter which also used to evaluate the accuracy of locations and rotation angles (EOPs) of cameras. The total RMSE (RMSE)xyz of GCPs is ± 2.530 mm while the total RMSE (RMSExyz) of CPs is ± 2.740 mm. The overall accuracy of the work is 5.000 mm.

Graphical Abstract

Highlights

  • Determination of Three-dimensional (3D) real scale model coordinates. 
  • Determination of camera interior orientation parameters (IOPs).
  • Determination of camera exterior orientation parameters (EOPs).
  • The bundle block adjustment method (BBA) is used in photogrammetric processing based on collinearity equation.
  • Assessment of results through statistical analysis showed a reliable accuracy where the overall accuracy of work is 5 mm.

Keywords

Main Subjects

[1] W. C. Liu and W. C. Huang, Close range digital photogrammetry applied to topography and landslide measurements, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., 41 (2016) 875–880, doi: 10.5194/isprsarchives-XLI-B5-875-2016.
[2] A. Goktepe and E. Kocaman, Analysis of camera calibrations using direct linear transformation and bundle adjustment methods, Sci. Res. Essays, 5 (2010) 869–872.
[3] Z. DURAN and M. E. ATİK, Accuracy comparison of interior orientation parameters from different photogrammetric software and direct linear transformation method, Int. J. Eng. Geosci., 6 (2021) 74–80, doi: 10.26833/ijeg.691696.
[4] P. Kozikowski, Extracting Three-dimensional Information from SEM Images by Means of Photogrammetry, Micron, 134 (2020) 0–4, doi: 10.1016/j.micron.2020.102873.
[5] E. Stylianidis, P. Patias, V. Tsioukas, L. Sechidis, and C. Georgiadis, a Digital Close-Range Photogrammetric Technique for Monitoring Slope Displacements, Proc. of11th FIG Symp. Deform. Meas. Santorini, Greece, 2003.
[6] M. H. M. Room and A. Ahmad, Mapping of a river using close range photogrammetry technique and unmanned aerial vehicle system, IOP Conf. Ser. Earth Environ. Sci., 18 (2014), doi: 10.1088/1755-1315/18/1/012061.
[7] C. Fraser and H. Hanley, Developments in Close-Range Photogrammetry for 3D Modelling: the iWitness Example, Process. Vis. using High-Resolution Imag.,4 (2004) 18–20, [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.118.6808.
[8] A. Jebur, F. Abed, and M. Mohammed, Assessing the performance of commercial Agisoft PhotoScan software to deliver reliable data for accurate3D modelling, MATEC Web Conf., 162, 2018,11, doi: 10.1051/matecconf/201816203022.
[9] A. Z. Khalaf, A. Hameed, G. Branch, and G. Branch, Orthomosaic from Generating 3D Models with Photogrammetry, 5 (2020) 48–60.
[10] A. A. Belmonte, M. M. P. Biong, and E. G. Macatulad, DEM generation from close-range photogrammetry using extended python photogrammetry toolbox, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., 42 (2013) 11–19, doi: 10.5194/isprs-archives-XLII-4-W5-11-2017.
[11] J. Timur, Accuracy of DSM By Using Unmanned Aerial Vehicles on the Downstream of Welang Riverbank, District of Pasuruan, Jawa Timur, 2021, doi: 10.1016/j.jhydrol.2015.09.069.A.
[12] S. I. Jiménez-Jiménez, W. Ojeda-Bustamante, M. D. J. Marcial-Pablo, and J. Enciso, Digital terrain models generated with low-cost UAV photogrammetry: Methodology and accuracy, ISPRS Int. J. Geo-Information, 10 (2021), doi: 10.3390/ijgi10050285.
[13] J. Hu, E. Liu, and J. Yu, Application of Structural Deformation Monitoring Based on Close-Range Photogrammetry Technology, Adv. Civ. Eng., 2021 (2021), doi: 10.1155/2021/6621440.
[14] C. Fraser, S. Cronk, and H. Hanley, Close-range photogrammetry in traffic incident management, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., 37 (2008) 125–128.
[15] G. Zhao, C. Zhang, X. Jing, X. Ling, and S. Chen, Study on the Technologies of Close Range Photogrammetry and Applications in the Manufacture of Aviation, 164 (2018) 480–487, doi: 10.2991/icmse-18.2018.91.
[16] W. YiMeng, Y. ShuYUe, R. Shuai, C. Shuai, and L. JingZhun, Close-range industrial photogrammetry and application: review and outlook, 2020, doi: 10.1117/12.2576470.
[17] P. Burdziakowski and P. Tysiac, Combined close range photogrammetry and terrestrial laser scanning for ship hull modelling, Geosci., 9 (2019) 242 , doi: 10.3390/geosciences9050242.
[18] X. Jing, C. Zhang, Z. Sun, G. Zhao, and Y. Wang, The Technologies of Close-range Photogrammetry and Application in Manufacture, Proc. 3rd Int. Conf. Mechatronics, Robot. Autom., 15 (2015) 988–994, doi: 10.2991/icmra-15.2015.192.
[19] M. A. Thomas, M. F. Hassan, W. S. I. Wan Salim, S. A. Osman, H. Mustafa, and M. A. Jalal, Reconstruction of 3D models in automotive engineering applications using close-range photogrammetry approach, J. Adv. Res. Fluid Mech. Therm. Sci., 61 (2019) 220–232.
[20] A. Khalaf, T. Ataiwe, I. Mohammed, and A. Kareem, 3D Digital modeling for archeology using close range photogrammetry, MATEC Web Conf., 162, 2018,162–165, doi: 10.1051/matecconf/201816203027.
[21] F. M. Abed, M. U. Mohammed, M. U. Mohammed, and S. J. Kadhim, Architectural and Cultural Heritage conservation using low-cost cameras, Appl. Res. J., 3 (2017) 376–384, [Online]. Available: http://arjournal.org.
[22] J. Sužiedelytė-Visockienė, R. Bagdžiūnaitė, N. Malys, and V. Maliene, Close-range photogrammetry enables documentation of environment-induced deformation of architectural heritage, Environ. Eng. Manag. J., 14 (2015) 1371–1381, 2015, doi: 10.30638/eemj.2015.149.
[23] M. A. Aguilar et al., Application of close-range photogrammetry and digital photography analysis for the estimation of leaf area index in a greenhouse tomato culture, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., 38 (2010) 5–10, [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-84896969703&partnerID=tZOtx3y1.
[24] D. J. Benton, A. J. Chambers, M. J. Raffaldi, S. A. Finley, and M. J. Powers, Close-range photogrammetry in underground mining ground control, Remote Sens. Syst. Eng. VI, 9977 (2016) 997707, doi: 10.1117/12.2236691.
[25] D. A. Hussien, F. M. Abed, and A. A. Hasan, Stereo photogrammetry vs computed tomography for 3D medical measurements, Karbala Int. J. Mod. Sci., 5 (2019) 201–212, doi: 10.33640/2405-609X.1130.
[26] J. Yang, Q. Zhou, and Q. Wang, Close-range photogrammetry for the modelling of mouldboard plough surfaces, PIAGENG 2013 Image Process. Photonics Agric. Eng., 8761 (2013) 87610D, doi: 10.1117/12.2019652.
[27] A. Jameel, Establishment oF 3D Model with Digital Non-Metric Camera in Close Range Photogrammetry, 31 (2013) 1601–1611.
[28] A. Zedan Khalaf and A. J. Salah Al-Saedi, Assessment of Structure with Analytical Digital Close Range Photogrammetry, Eng. Technol. J., 34 (2016) 2140–2151.
[29] T. N. Ataiwe, I. Hatem, and H. M. J. Al Sharaa, Digital Model in Close-Range Photogrammetry Using a Smartphone Camera, 04005 (2021) 1–11.
[30] C. Vi and W. G. Vi, Digital Photogrammetry At Graduated Study in Uaceg, October, 2000.
[31] S. M. Walker, A. L. R. Thomas, and G. K. Taylor, Photogrammetric reconstruction of high-resolution surface topographies and deformable wing kinematics of tethered locusts and free-flying hoverflies, J. R. Soc. Interface, 6 (2009) 351–366, doi: 10.1098/rsif.2008.0245.
[32] H. Rüther, J. Smit, and D. Kamamba, A Comparison of Close-Range Photogrammetry to Terrestrial Laser Scanning for Heritage Documentation, South African J. Geomatics, 1 (2012) 149-162–162.
[33] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, Bundle adjustment – a modern synthesis, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 1883 (2000) 298–372, doi: 10.1007/3-540-44480-7_21.
[34] J. A. Doumit, From Drones to Geospatial Data, 2019, [Online]. Available: https://www.researchgate.net/publication/330555127.
[35] N. Börlin, A. Murtiyoso, P. Grussenmeyer, F. Menna, and E. Nocerino, Flexible photogrammetric computations using modular bundle adjustment: The chain rule and the collinearity equations, Photogramm. Eng. Remote Sensing, 85 (2019) 361–368, doi: 10.14358/PERS.85.5.361.
[36] K. Jacobsen, Methods of Block adjustment and Analoge Adjustment, , 1960.
[37] K. L. A. El-Ashmawy, Block Adjustment Using Control Distances Constraint, , 03 (2021) 253–257, doi: 10.1177/1455072596013005-612.
[38] N. Yastikli, I. Bagci, and C. Beser, The processing of image data collected by light UAV systems for GIS data capture and updating, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., 40 (2013) 267–270, doi: 10.5194/isprsarchives-XL-7-W2-267-2013.
[39] G. Vacca, “Overview of Open Source Software for Close Range Photogrammetry, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., 42 (2019) 239–245, doi: 10.5194/isprs-archives-XLII-4-W14-239-2019.
[40] W. Faig, Calibration of Close-Range Photogrammetric Systems: Mathematical Formulation., Photogramm. Eng. Remote Sensing, 41 (1975) 1479–1486.
[41] D. T. Y. Al -Qaysi, Design A Criterion for the Determination of the Interior Orientation Parameters of Non-Metric ( Digital Camera ), M. Sc. Thesis submitted to the Universty of Technology- Iraq, 2016.
[42] Instruction Manual Canon EOS 500D Digital Camera, Instruction Manual, Guide Book, South America,  2003.
[43] D. George and P. Mallery, “Simple Linear Regression,” IBM SPSS Stat. 25 Step by Step, no. Ed 8, 207–221, 2020, doi: 10.4324/9781351033909-22.
[44] M. Otivation and I. Ntroduction, Machine Learning and Data Mining, 2012, doi: 10.13140/RG.2.2.20395.49446/1.
[45] B. B. Frey, Standard Error of Measurement, SAGE Encycl. Educ. Res. Meas. Eval., 2018, doi: 10.4135/9781506326139.n658.
[46] R. Gonzalez, Lecture Notes 7 : Residual Analysis and Multiple Regression 7-1 Lecture Notes  (7) : Residual Analysis and Multiple Regression, Nonlinearity, 2 (2011) 1–22.
[47] A. C. Cameron and F. A. G. Windmeijer, R-squared measures for count data regression models with applications to health-care utilization, J. Bus. Econ. Stat., 14 (1996) 209–220, doi: 10.1080/07350015.1996.10524648.
[48] N. Q. Long, X. Bui, N. V. Nghia, and P. Van Chung, Lightweight Unmanned Aerial Vehicle and Structure-from-Motion Photogrammetry for Generating Digital Surface Model for Open-Pit Coal Mine Area and Its Accuracy Assessment, Adv. Appl. Geospatial Technol. Earth Resour., 2017, 2018, doi: 10.1007/978-3-319-68240-2.
[49] D. K. Lee, J. In, and S. Lee, Standard deviation and standard error of the mean, Korean J. Anesthesiol., 68 (2015) 220–223, doi: 10.4097/kjae.2015.68.3.220.