Document Type : Research Paper

Authors

1 Department of Civil Engineering, University of Technology, Baghdad

2 Al-Nahrain University - Civil Engineering Department - Water Division, Baghdad Governorate

3 School of Engineering, University of Bolton

Abstract

Global warming induces to increase of greenhouse gases in the atmosphere and plays a crucial role in determining the future trend in climatology and hydrology of a watershed. This paper aims to investigate the implications of global warming on future climate and its consequents on streamflow of the Adhaim River Basin (ARB). For this purpose, the Long Ashton Research Station-Weather Generator (LARS-WG) and Soil and Water Assessment Tool (SWAT)-Based models were implemented. The climate and hydrologic records for the period 1990-2019 were used as a Reference Period (RP) and projected to 2080 under Representative Concentration Pathways (RCPs 2.6, 4.5, and 8.5) and five Global Climate Models (GCMs). The results show that the region of ARB tends to become hotter and drier with an increase in mean temperature by 1.2, 2.9, and 4.6 °C under the considered RCPs, respectively. However, precipitation tends to decrease from 366 mm/y in RP to 320.2, 302, and 300.5 mm/y by 2080 under the considered RCPs. Consequently, the streamflow will decrease to about 28, 26, and 24 m3/s by 2080 under the considered RCPs, respectively, compared with 28.96 m3/s in RP. Therefore, adaptation strategies are highly recommended to alleviate the negative impacts of climate change, and the implications of climate change on groundwater, water demand, and adaptation plans should be investigated in future studies.

Graphical Abstract

Highlights

  • Connection between LARS-WG and SWAT models presented successful simulation for current and future climate and hydrological systems in ARB.
  • ARB tend to become hotter and drier by 2080 due to global warming.
  • Adaptation strategies should be applied in water resources management of ARB.

Keywords

Main Subjects

[1] IPCC, Climate Change 2014: Synthesis Report. Contribution. 2014.
[2] G. K. Vallis, P. Zurita-Gotor, C. Cairns, and J. Kidston, Response of the large-scale structure of the atmosphere to global warming, Q. J. R. Meteorol. Soc., 141 (2015) 1479–1501, doi: 10.1002/qj.2456.
[3] L. Al-Ghussain, Global warming: review on driving forces and mitigation, Environ. Prog. Sustain. Energy, 38 (2019) 13–21, doi: 10.1002/ep.13041.
[4] D. L. Lombardozzi, G. B. Bonan, N. G. Smith, J. S. Dukes, and R. A. Fisher, Temperature acclimation of photosynthesis and respiration: A key uncertainty in the carbon cycle-climate feedback, Geophys. Res. Lett., 42 (2015) 8624–8631, doi: 10.1002/2015GL065934.
[5] P. Kinney, J. Schwartz, and M. Pascal, Réchauffement climatique : Doit-on s’attendre à une baisse de la mortalité hivernale ?, Environnement, Risques et Sante, 14 (2015) 468–469, doi: 10.1088/1748-9326/10/6/064016.
[6] P. Lionello and L. Scarascia, The relation between climate change in the Mediterranean region and global warming, Reg. Environ. Chang., 18 (2018) 1481–1493, doi: 10.1007/s10113-018-1290-1.
[7] T. Bein, C. Karagiannidis, and M. Quintel, Climate change, global warming, and intensive care, Intensive Care Med., 46 (2020) 485–487, doi: 10.1007/s00134-019-05888-4.
[8] A. Kleidon and M. Renner, A simple explanation for the sensitivity of the hydrologic cycle to surface temperature and solar radiation and its implications for global climate change, Earth Syst. Dyn., 4 (2013) 455–465, doi: 10.5194/esd-4-455-2013.
[9] A. Holsten, T. Vetter, K. Vohland, and V. Krysanova, Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas, Ecol. Modell.,220 (2009) 2076–2087, doi: 10.1016/j.ecolmodel.2009.04.038.
[10] M. Hauser, R. Orth, and S. I. Seneviratne, Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia, Geophys. Res. Lett., 43 (2016), 2819–2826, doi: 10.1002/2016GL068036.
[11] A. Dai, T. Zhao, and J. Chen, Climate Change and Drought: a Precipitation and Evaporation Perspective, Curr. Clim. Chang. Reports, 4 (2018) 301–312, doi: 10.1007/s40641-018-0101-6.
[12] P. A. O’Gorman, Precipitation Extremes Under Climate Change, Curr. Clim. Chang. Reports, 1 (2015) 49–59, doi: 10.1007/s40641-015-0009-3.
[13] J. S. Littell, S. A. McAfee, and G. D. Hayward, Alaska snowpack response to climate change: Statewide snowfall equivalent and snowpack water scenarios, Water (Switzerland), 10 (2018), doi: 10.3390/w10050668.
[14] M. Ohba and S. Sugimoto, Impacts of climate change on heavy wet snowfall in Japan, Clim. Dyn., 54 (2020) 3151–3164, doi: 10.1007/s00382-020-05163-z.
[15] I. Chawla and P. P. Mujumdar, Isolating the impacts of land use and climate change on streamflow, Hydrol. Earth Syst. Sci., 19 (2015) 3633–3651, doi: 10.5194/hess-19-3633-2015.
[16] X. Tan and T. Y. Gan, Contribution of human and climate change impacts to changes in streamflow of Canada, Sci. Rep., 5 (2015), doi: 10.1038/srep17767.
[17] B. Su, J. Huang, X. Zeng, C. Gao, and T. Jiang, Impacts of climate change on streamflow in the upper Yangtze River basin, Clim. Change, 141 (2017) 533–546, doi: 10.1007/s10584-016-1852-5.
[18] B. Asadieh and N. Y. Krakauer, Global change in streamflow extremes under climate change over the 21st century, Hydrol. Earth Syst. Sci., 21 (2017) 5863–5874, doi: 10.5194/hess-21-5863-2017.
[19] L. Touzé-Peiffer, A. Barberousse, and H. Le Treut, The Coupled Model Intercomparison Project: History, uses, and structural effects on climate research, Wiley Interdiscip. Rev. Clim. Chang., 11 (2020) 1–15, doi: 10.1002/wcc.648.
[20] S. Emori et al., CMIP5 data provided at the IPCC Data Distribution Centre, 2016.
[21] J. Lelieveld et al., Climate change and impacts in the Eastern Mediterranean and the Middle East, Clim. Change, 114 (2012) 667–687, doi: 10.1007/s10584-012-0418-4.
[22] M. A. Lange, Impacts of climate change on the Eastern Mediterranean and the Middle East and North Africa region and the water-energy nexus, Atmosphere (Basel)., 10 (2019), doi: 10.3390/atmos10080455.
[23] J. P. Evans, 21st century climate change in the Middle East, Clim. Change, 92 (2009) 417–432, doi: 10.1007/s10584-008-9438-5.
[24] J. Sowers, A. Vengosh, and E. Weinthal, Climate change, water resources, and the politics of adaptation in the Middle East and North Africa, Clim. Change, 104 (2011) 599–627, doi: 10.1007/s10584-010-9835-4.
[25] F. A. M. Al-Faraj and D. Tigkas, Impacts of Multi-year Droughts and Upstream Human-Induced Activities on the Development of a Semi-arid Transboundary Basin, Water Resour. Manag., 30 (2016) 5131–5143, doi: 10.1007/s11269-016-1473-9.
[26] T. A. Awchi and M. M. Kalyana, Meteorological drought analysis in northern Iraq using SPI and GIS, Sustain. Water Resour. Manag., 3, (2017) 451–463, doi: 10.1007/s40899-017-0111-x.
[27] N. Chokkavarapu and V. R. Mandla, Comparative study of GCMs, RCMs, downscaling and hydrological models: a review toward future climate change impact estimation, SN Appl. Sci., 1 (2019), doi: 10.1007/s42452-019-1764-x.
[28] D. Duethmann, G. Bloschl, and J. Parajka, Why does a conceptual hydrological model fail to correctly predict discharge changes in response to climate change?, Hydrol. Earth Syst. Sci., 24 (2020) 3493–3511, doi: 10.5194/hess-24-3493-2020.
[29] R. Mohammed and M. Scholz, Climate change and anthropogenic intervention impact on the hydrologic anomalies in a semi-arid area: Lower Zab River Basin, Iraq, Environ. Earth Sci., 77 (2018), doi: 10.1007/s12665-018-7537-9.
[30] M. S. Al-Khafaji and R. D. Al-Chalabi, Assessment and mitigation of streamflow and sediment yield under climate change conditions in Diyala River Basin, Iraq, Hydrology, 6 (2019), doi: 10.3390/hydrology6030063.
[31] A. Nasser Hilo, F. H. Saeed, and N. Al-Ansari, Impact of Climate Change on Water Resources of Dokan Dam Watershed, Engineering, 11 (2019) 464–474, doi: 10.4236/eng.2019.118033.
[32] F. H. Saeed, M. S. Al-Khafaji, and F. Al-Faraj, Hydrologic response of arid and semi-arid river basins in Iraq under a changing climate, J. Water Clim. Chang., 00 (2022) 1–16, doi: 10.2166/wcc.2022.418.
[33] M. Al-Khafaji, F. H. Saeed, and N. Al-Ansari, The Interactive Impact of Land Cover and DEM Resolution on the Accuracy of Computed Streamflow Using the SWAT Model, Water. Air. Soil Pollut., 231 (2020) doi: 10.1007/s11270-020-04770-0.
[34] M. S. Al-khafaji and F. H. Saeed, Effect of DEM and Land Cover Resolutions on Simulated Runoff of Adhaim Watershed by SWAT Model, Eng. Technol. J., 36 (2018), doi: 10.30684/etj.36.4a.11.
[35] V. K. Sissakian, Geomorphology and morphometry of the three tributaries of Adhaim river, central part of Iraq Geology of Iraq View project Geology of Iraq View project, 2013 [Online]. Available: https://www.researchgate.net/publication/274372897.
[36] F. H. Saeed, M. S. Al-khafaji, and F. A. Al-faraj, Forecasting of Future Irrigation Water Demand for Salah-addin Province under Various Scenarios of Climate Change , 1 (2022).
[37] F. Abdulla and L. Al-Badranih, Application d’un modèle pluie-débit à trois bassins versants d’Irak, Hydrol. Sci. J., 45 (2000) 13–25, doi: 10.1080/02626660009492303.
[38] A. N. A. Hamdan, Rainfall-Runoff Modeling Using the HEC-HMS Model for the, 2021.
[39] H. H. Hussain et al., “Modifying the Spillway of Adhaim Dam, Reducing Flood Impact, and Saving Water, J. Water Manag. Model., 30 (2022) 1–11, doi: 10.14796/jwmm.c485.
[40] D. R. Fuka, M. T. Walter, C. Macalister, A. T. Degaetano, T. S. Steenhuis, and Z. M. Easton, Using the Climate Forecast System Reanalysis as weather input data for watershed models, Hydrol. Process., 28 (2014) 5613–5623, doi: 10.1002/hyp.10073.
[41] S. Mehan, T. Guo, M. W. Gitau, and D. C. Flanagan, Comparative study of different stochasticweather generators for long-term climate data simulation, Climate, 5 (2017) 1–40, doi: 10.3390/cli5020026.
[42] M. W. Gitau, S. Mehan, and T. Guo,Weather Generator Effectiveness in Capturing Climate Extremes, Environ. Process., 5 (2018) 153–165, doi: 10.1007/s40710-018-0291-x.
[43] M. A. Semenov and E. M. Barrow, LARS-WG: A Stochastic Weather Generator for Use in Climate Impact Studies version 3. User Manual, User Manual, Hertfordshire, UK, 2002.
[44] M. A. Semenov, R. J. Brooks, E. M. Barrow, and C. W. Richardson, Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates, Clim. Res., 10 (1998) 95–107, doi: 10.3354/cr010095.
[45] L. Yang et al., A comparison of the reproducibility of regional precipitation properties simulated respectively by weather generators and stochastic simulation methods, Stoch. Environ. Res. Risk Assess., 6 (2021), doi: 10.1007/s00477-021-02053-6.
[46] P. W. Gassman, M. R. Reyes, C. H. Green, and J. G. Arnold, The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions, Trans. ASABE, 50 (2007) 1211–1250, doi: 10.13031/2013.23637.
[47] K. C. Abbaspour et al., Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, J. Hydrol., 333 (2007) 413–430, doi: 10.1016/j.jhydrol.2006.09.014.
[48] K. C. Abbaspour, E. Rouholahnejad, S. Vaghefi, R. Srinivasan, H. Yang, and B. Kløve, A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model, J. Hydrol., 524 (2015) 733–752, doi: 10.1016/j.jhydrol.2015.03.027.
[49] F. H. Saeed and M. S. and F. A. M. A.-F. Al-khafaji, Sensitivity of Irrigation Water Requirement to Climate Change in Arid and Semi-Arid Regions towards Sustainable Management of Water Resources, 2021.
[50] X. Zhang et al., Trends in Middle East climate extreme indices from 1950 to 2003, J. Geophys. Res. Atmos., 110 (2005) 1–12, doi: 10.1029/2005JD006181.
[51] E. Kostopoulou et al., Spatio-temporal patterns of recent and future climate extremes in the eastern Mediterranean and Middle East region, Nat. Hazards Earth Syst. Sci., 14 (2014) 1565–1577, doi: 10.5194/nhess-14-1565-2014.
[52] Y. Brouziyne, A. Abouabdillah, R. Bouabid, L. Benaabidate, and O. Oueslati, SWAT manual calibration and parameters sensitivity analysis in a semi-arid watershed in North-western Morocco, Arab. J. Geosci.,10 (2017), doi: 10.1007/s12517-017-3220-9.
[53] S. H. Hosseini and M. R. Khaleghi, Application of SWAT model and SWAT-CUP software in simulation and analysis of sediment uncertainty in arid and semi-arid watersheds (case study: the Zoshk–Abardeh watershed), Model. Earth Syst. Environ., 6 (2020) 2003–2013, doi: 10.1007/s40808-020-00846-2.
[54] J. G. Arnold et al., SWAT: Model use, calibration, and validation, Trans. ASABE, 55 (2012) 1491–1508.
[55] W. G. Nassif, Z. A. AL-Ramahy, S. A. Muter, and O. T. Al-Taai, Effect of Variation of Rainfall, Soil Moisture and Evaporation in Baghdad City, no. December, 2020, doi: 10.13140/RG.2.2.24366.95047.
[56] “Aydın et al 2019.pdf.” .
[57] N. Khan, S. Shahid, K. Ahmed, T. Ismail, N. Nawaz, and M. Son, Performance assessment of general circulation model in simulating daily precipitation and temperature using multiple gridded datasets, Water (Switzerland), 2018, doi: 10.3390/w10121793.
[58] K. Ahmed, D. A. Sachindra, S. Shahid, M. C. Demirel, and E. S. Chung, Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics, Hydrol. Earth Syst. Sci., 23 (2019) 4803–4824, doi: 10.5194/hess-23-4803-2019.
[59] F. H. S. Chiew, Estimation of rainfall elasticity of streamflow in Australia, Hydrol. Sci. J., 51 (2006) 613–625, doi: 10.1623/hysj.51.4.613.
[60] M. Sharif, J. M. Islamia, H. J. Fowler, and N. Forsythe, Trends in timing and magnitude of flow in the Upper Indus Basin, Hydrol. Earth Syst. Sci. Discuss., 9 (2012) 9931–9966, doi: 10.5194/hessd-9-9931-2012.
[61] K. N. Musselman, M. P. Clark, C. Liu, K. Ikeda, and R. Rasmussen, Slower snowmelt in a warmer world, Nat. Clim. Chang., 7 (2017) 214–219, doi: 10.1038/nclimate3225.
[62] E. Rottler, A. Bronstert, G. Bürger, and O. Rakovec, Projected changes in Rhine River flood seasonality under global warming, Hydrol. Earth Syst. Sci., 25 (2021) 2353–2371, doi: 10.5194/hess-25-2353-2021.