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H I G H L I G H T S   A B S T R A C T  
• An active Fault Detection and Fault Tolerant 

Control FD-FTC method were implemented 
for the speed sensors fault utilized in the 
anti-lock braking system. 

• Proposed Method FD-FTC is a Data-Based 
method implemented with a neural network 
model. 

• The data required for training neural 
network models are obtained from the 
Quarter Car Model implemented with the 
MATLAB environment. 

• During the applied test, the responses were 
accurate, and the implemented method 
served its design purpose. 

• The proposed method will increase the 
reliability and safety of the anti-lock braking 
system used in modern vehicle braking 
systems. 

 This paper proposed neural networks to continuously provide alternative 
constructed signals for vehicle and wheel speed sensors utilized for the Anti-
Lock Braking System (ABS), which serves as the fault tolerant control method. 
These alternative constructed signals are used for two purposes. The first is to 
generate residual signals, and the second is to be adopted instead of isolated 
faulty signals. The residual signal is generated by extracting the difference 
between the alternative constructed signals and the corresponding actual signals. 
These residual signals serve as an indication of fault occurrence and to express 
that fault severity. Whenever a fault occurrence is detected and diagnosed in one 
of the sensor’s signals, the faulty signal is isolated and replaced by the 
corresponding constructed signal to maintain the system's normal behavior under 
a faulty condition. The range of data covered under the proposed estimating 
neural networks is huge, continuous in time, and not sampled. In this work, the 
range of the data lies between [50 to 120 km/h] when the braking is started. That 
cannot be performed by any available method. These models' training process is 
based on the Levenberg-Marquardt (LM) algorithm, implemented and tested by 
MATLAB/Simulink. The results show that these models can accurately map the 
measured data into the desired output through the best-fit functions. The fast 
response of the trained models makes them suitable for real-time alternative 
signals for fault-tolerant purposes for speed sensors during hard or panic braking. A R T I C L E  I N F O  
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1.  Introduction 
Recently, the field of automotive technology has witnessed great development, especially with regard to vehicle stability 

and passenger safety. Therefore, it is important to include several safety systems that work to prevent drivers from having 
injuries while driving or during sudden braking [1]. Under full braking, especially sudden or panic braking, a large braking 
force will be applied to the brake cylinder of the wheel and lead to a wheel lock-up state [2]. In a wheel lock-up state, the 
wheel may slip on its roadway, leading to a minimum amount of maneuverability. In other words, the driver will not be able to 
control the wheel direction [3]. Additionally, the braking distance increases and the probability of accidents becomes very high 
[4]. To solve such a problem, the designers of automotive technology systems worked to develop efficient vehicle braking 
systems. They developed a functionally good, controllable braking system by incorporating several components, including 
electric, electronic, mechanical, and hydraulic [5, 6]. 
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One of these advanced braking system technologies is the Anti-lock Braking System (ABS), which controls brake torque 
to avoid a wheel lock-up state during braking [7]. IDCD. Maia [8] describes ABS as an electronic-based control system 
designed to provide the ability to steer a vehicle during a fully braking moment to avoid the wheel lock-up state. 

The main objective of ABS is to regulate the brake pressure applied to the wheel brake cylinder to obtain maximum 
friction force and maintain the vehicle's lateral stability. This will reduce the stopping distance and, at the same time, it will 
ensure that directional control is maintained [9]. However, a core control for ABS is the relative slip computation accuracy, 
which in turn mainly depends on the measurement of two-speed sensors. These are vehicle speed and wheel speed sensors 
[10]. Consequently, any malfunction or fault that occurs in one of them will directly affect their output signal and lead to 
incorrect calculation of relative slip and, in turn, result in the occurrence of safety accidents. Thus, it is necessary to construct a 
control system that can detect and accommodate these faults automatically with a specific precalculated level of errors. Such a 
control system is called a Fault Tolerant Control system (FTC).Recently, the topic of fault tolerance has attracted the interest of 
many researchers, such as Widjiantoro and Indriawati [11]. They suggested an FTC for both the sensor and actuator used in 
ABS. In their method, an estimation for the occurred fault is performed by utilizing proportional-integral (PI) observers with an 
extended form of state space equation followed by a compensation mechanism or reconfiguration mechanism that is used to 
replace the unhealthy signal with the estimated signal to compensate for the produced control signal. Simulation results show 
that the control system's response to the proposed algorithm yields an improved dynamic behavior than SMC without fault 
tolerant properties. Moreover, the system presents an inherent characteristic to deal with minor faults in the hydraulic unit. 
Muhammad  Pinandhito et al. [12] also proposed an FTC detection and isolation method for the faults that may occur in the 
ABS speed sensors. In their method, an algorithm for calculating residual signals is utilized in fault detection. Then, an SMC 
utilizes this residual signal to produce a compensated control signal. According to the response test results after applying the 
bias and sensitivity faults, the system with the AFTC algorithm can completely overcome the sensor defect. Hui Sun et al. [13] 
suggested a model-based FTC, an observer-based method to detect faults that may occur in the speed sensor of an aircraft 
ABS. In their work, a Sliding Mode Observer (SMO) is introduced for fault detection and diagnosis. After fault detection, 
SMO works as a wheel speed estimator to provide a suitable replacement for the faulty measured signal. So, the control 
operation automatically changes from wheel speed sensor-based to senseless-based mode, so an observer-based FTC scheme is 
developed. When the wheel speed sensor is damaged, or there is an outside disturbance, the ABS maintains the observed state 
and remains stable. The results from the simulation demonstrate the effectiveness of the suggested approach against various 
sensor faults. Zahedi et al. [14] designed a bank of sliding mode observers that are utilized for sensor fault detection and 
isolation in an ABS. They demonstrated that using numerical simulations. They could successfully detect and isolate possible 
faults in the sensor. However, such a method is limited in fault detectability to the n-number of the utilized observer. 
Furthermore, no strategy for the detected fault accommodation has been presented. From the aforementioned review of the 
literature on diagnosing ABS faults, all of them have used model-based methods for ABS fault detection and health 
monitoring. However, the analyzing process of fault detectability in the above illustrated methods is not concise. Also, the 
steps for implementing the FDI system for residual signal generation are not clear. 

Additionally, Guo et al. [15] proposed a Sliding Mode Controller to keep the optimal slip for the ABS used in electric 
vehicles. A performance comparison was presented for the ABS bang-bang controller with and without the proposed SMC. 
With the SMC controller, there was an improvement in passenger comfort and brake stability. Also, the slip was more accurate 
with the increase in braking torque of the motor. However, in their work, no Active-FTC has not been employed to 
accommodate the malfunction or fault in actuators or both sensors. Finally, Cabasino et al. [16] presented fault diagnosis 
analysis using a petri net. The effectiveness of their method was confirmed by diagnosing specific cases. However, they did not 
rely on a mathematical model of the ABS in developing their methodology based on logical thinking. Also, they did not 
address the issues with fault isolation and detection. These points are different from the work presented in this paper. 

In this work, a data-based active FDI and FTC method have been implemented to detect, isolate, and accommodate the 
faults that may occur in one of the ABS speed sensors. It works to generate an alternative constructed signal. They are used for 
two purposes. The first is to generate residual signals, and the second is to be adopted instead of isolated faulty signals. The 
residual signal is generated by extracting the difference between the alternative constructed signals and the corresponding 
actual signals. These residual signals serve as an indication of fault occurrence and to express that fault severity. Whenever a 
fault occurrence is detected and diagnosed in one of the sensor’s signals, the faulty signal is isolated and replaced by the 
corresponding constructed signal to maintain the system's normal behavior under a faulty condition. This suggested approach is 
implemented using the principle of fast processing Curve Fitting (CF) executed by Neural Networks (NNs). NNs have been 
employed in various fields due to, in part, a new powerful algorithm development that affects their ability to process 
information rapidly and leads to faster response [17- 20]. NNs provide a perfect tool with high accuracy and fast response 
solution for nonlinear CF problems [15]. Typically, the algorithms of NN are considerably faster than traditional iterative CF 
methods. Also, no initial guess is needed for the solution. Additionally, for real-time applications, there is an ability to 
implement the designed network model with special-purpose hardware, thereby exploiting the full capabilities of NN, 
including high processing speed.In the sequel, section ii presents background and related work. Next, section iii describes the 
proposed FT approach. Then, section IV provides the discussion of the results, and finally, the conclusion is presented in 
section V. 

2. Research Methodology 

2.1 Quarter Car Model 
The Quarter Car Model (QCM) method is considered efficient for driving the ABS model. The QCM vehicle dynamics 

during braking are depicted in Figure 1 below [21]. 
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Figure 1: QCM model 

That may be described according to the following equation: 

 𝐹𝐹𝑥𝑥 = m × 𝑔𝑔 ×  𝜇𝜇(𝜆𝜆)  (1) 

 �̇�𝜔 = (𝑅𝑅 ×  𝐹𝐹𝑥𝑥 −  𝑇𝑇𝑏𝑏) / I  (2) 

 �̇�𝑉 = −𝐹𝐹𝑥𝑥  ÷ 𝑚𝑚  (3) 

Then the longitudinal wheel slip (LWS) symbolized by λ may be calculated by: 

 𝜆𝜆 =  1 − 𝜔𝜔𝜔𝜔
𝑉𝑉

  (4) 

Where I represents the moment of inertia of the wheel, represents wheel speed change ratio, R is the wheel radius, is the 
road-tire contact force, represents the braking torque, m represents the vehicle quarter mass, vehicle speed change ratio, g is the 
gravitational acceleration constant, and finally, μ  is the Road Friction Coefficient (RFC). The calculation of RFC is performed 
based on a nonlinear relationship between itself and the LWS. This relationship is complex and depends on several parameters, 
such as tire state, speed of the vehicle, and road type[21]. Figure 2 shows RFC as a function of LWS for various road 
conditions. 

 
Figure 2: RFC (μ) versus LWS (λ)[21] 

From Figure 2, the maximum braking force value can be achieved at LWS near 0.2 value for most road types. In other 
words, the ABS has to manipulate the braking torque to have the required LWS that results in efficient braking. 

2.2 Fast Curve Fitting Using Neural Network 
Curve fitting is a common problem in data analysis. It is the process of fitting parametrized functional forms to sets of 

empirical data [22]. The question is how to find the best values of these parameters. The best parameter values are typically 
determined by minimizing an error measure. This error measure is frequently assumed to be the sum of the squares of the 
errors between the actual data values and the predicted values by the function. Suppose the form of the function is linear or the 
function is linearly dependent on the parameter. In that case, the minimization problem is considered linear and can be solved 
easily. However, in many cases, it is important to consider that the functional forms depend nonlinearly on the parameters. In 
these situations, the error measure minimization process typically includes an iterative method that starts with initial guessed 
values. These iterative techniques require intensive computing ability and are hence slow. Furthermore, suitable initial 
parameter guessing may require human involvement to guarantee convergence to the desired solution for complicated 
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problems. Therefore, there is great interest in techniques that perform fast and can automate fitting processes, especially for 
real-time applications or applications with high data volumes. 

A neural network offers a novel technique to determine the optimal values of the function parameters. The algorithms of 
NN are typically much faster than those of conventional iterative CF techniques. Additionally, the solution does not require an 
initial guess, and there is an ability to implement the designed network model with special-purpose hardware and, in this way, 
take advantage of the full ability of NN, including high processing speed [17-20]. 

A Multi-Layer Perceptron (MLP) is the most commonly used network type. An MLP consists of nodes that are also called 
neurons or network units, as illustrated in Figure 3. In the diagram, each unit is represented by a circle, and the lines that 
connect them are referred to as weights or links. The network can be described as an analytical mapping between a set of input 
variables 𝑥𝑥𝑚𝑚(𝑚𝑚 = 1, … ,𝑀𝑀) and a set of output variables 𝑦𝑦𝑛𝑛(𝑛𝑛 = 1, … ,𝑁𝑁) the output equation is given by: 
 

 𝑦𝑦𝑛𝑛(𝑥𝑥1, 𝑥𝑥2 … . 𝑥𝑥𝑀𝑀) =  ∑ 𝜔𝜔�𝑛𝑛𝑛𝑛 𝑓𝑓(∑ 𝜔𝜔𝑛𝑛𝑚𝑚 𝑥𝑥𝑚𝑚𝑀𝑀
𝑚𝑚=1 + 𝜃𝜃𝑛𝑛)𝐿𝐿

𝑛𝑛=1 +  𝜃𝜃�𝑛𝑛 (5) 

Where ω is link weight, θ an offset value, and f(.) is a nonlinear transformation function called an activation function[23]. 

 
Figure 3: RFC (μ) versus LWS (λ)[21] 

3. ABS Modelling and Data Collecting 
Based on the QCM described in section 2.1, a MATLAB Simulink model for an ABS has been implemented, as shown in 

Figure 4. This model is used to collect the required data to serve as training data. 

 
Figure 4: ABS Model Block Diagram 

In this work, the road condition is assumed to be dry asphalt, the controller applied controller is a Bang-bang controller, 
the desired LWS is 0.2, and the remaining required ABS parameters are listed below in Table 1. The maximum speed is 
limited to 130 km/h, and various initial speeds have been applied below this maximum value. At each applied speed, four 
variables are observed, the vehicle speed data (𝑉𝑉𝑠𝑠), the vehicle speed change ratio (𝑑𝑑𝑉𝑉𝑠𝑠/𝑑𝑑𝑑𝑑), the wheel speed data (𝜔𝜔𝑠𝑠), and the 
wheel speed change ratio (𝑑𝑑𝜔𝜔𝑠𝑠/𝑑𝑑𝑑𝑑). Then, two separate tables have applied an extraction and suitable arrangement for signal 
data. Each of these tables contains a total of 17,436 data samples. Each of these tables will serve as a database for the training 
objective for the corresponding neural model using the first and second models. A selected portion of these data samples is 
illustrated in Table 2 and Table 3 below. 
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Table 1: QCM Parameters utilized in the simulations 

Symbol Value 
J 1.7 Kg-m2 
R 0.326 meter 
m 375 Kg 
Initial Tb 0.01 Nm 
Maximum Tb 1500 Nm 
g 1.7 Kg-m2 

Table 2: Training database for the first model (Randomly selected portion) 

𝝎𝝎𝒔𝒔 𝒅𝒅𝝎𝝎𝒔𝒔/𝒅𝒅𝒅𝒅 𝑽𝑽𝒔𝒔 

45.8286 -45.0901 49.8547 

45.4716 -35.7006 49.8114 

45.1884 -28.3241 49.7652 

44.96 -22.8395 49.7169 

44.7706 -18.9334 49.6668 

44.6071 -16.3515 49.6155 

Table 3: Training database for second model (Randomly selected portion) 

𝑽𝑽𝒔𝒔 𝒅𝒅𝑽𝑽𝒔𝒔/𝒅𝒅𝒅𝒅 𝝎𝝎𝒔𝒔 

46.8467 -6.3395 38.6199 

46.7832 -6.3441 38.5126 

46.7197 -6.3486 38.4072 

46.6562 -6.3529 38.3037 

46.5926 -6.3571 38.202 

46.529 -6.3611 38.102 

4. Data Constructing Models and Training Results 
MLP networks have been built and trained in two separate but identical in topology. As shown in Figure 5 below, each model 
consists of an input layer, a hidden layer, and an output layer: 

 
Figure 5: NN-MLP Based WSC Model Topology 

Both MLP-NN models were evaluated using MATLAB (R2020a version), and these two models are Wheel Speed 
Constructor (WSC) models and used to construct wheel speed data. Its input layer is formed by the vehicle speed data (𝑉𝑉𝑠𝑠) and 
vehicle speed change ration (𝑑𝑑𝑉𝑉𝑠𝑠/𝑑𝑑𝑑𝑑) while the output layer is formed by the wheel speed data (𝑉𝑉𝑠𝑠) as shown in Figure 6. 

 
Figure 6: WSC Data Constructor model 
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The second is the Vehicle Speed Constructor (VSC) model used to construct vehicle speed data. Its input layer is formed 
by the wheel speed data (𝜔𝜔𝑠𝑠) and wheel speed change ration (𝑑𝑑𝜔𝜔𝑠𝑠/𝑑𝑑𝑑𝑑). While its output layer is formed by the vehicle speed 
data (𝑉𝑉𝑠𝑠). As shown in Figure 7. 

 
Figure 7: VSC Data Constructor model 

The training process is performed based on the Levenberg-Marquardt (LM) training function, which is a feed-forward 
back-propagation network. It utilizes the separate datasets prepared in the previews section, one for the WSC model training 
and one for the VSC model training. As mentioned in the previews section, each of these data sets contains a total of 17,436 
data samples. Each data set is further subdivided into three groups as follows: The first group is 70% (12206 samples) of the 
overall data set and is utilized for model training. These are known as the data sets from which the error is used to fit and 
adjust the network during training. The second group is 15% (2615 samples) of the overall data set and is utilized for 
validation. These datasets are known as the data used to measure how the trained network is general for real data checks and to 
stop training based on generalization results. The third group is 15% (2615 samples) of the overall data set and is utilized for 
testing purposes only. These datasets measure network performance independently after being trained and validated. Therefore, 
testing samples do not affect training datasets. 

During training, the training data samples are set to the network, and the values of both biases and weights keep changing 
until the error of training data samples approaches the minimum acceptable limit. 

Tables 4 and 5 illustrate the performance results for the two WSC and VSC-developed models, respectively. Both tables 
contain the values of the regression coefficient R2 and mean squared error MSE related to the three utilized datasets (training, 
testing, and validation datasets). It can be concluded that both trained models have very good performance as the MSE 
approaches zero and R2 closes to unity. 

Table 4: Training Performance results of the VSC model 

Data Sets NO. of Samples MSE R2 
Training 12206 6.71313e-1 0.999751 
Validation 2615 6.36787e-1 0.999759 
Testing 2615 1.12486e-0 0.999586 

Table 5: Training Performance results of the VSC model 

Data Sets NO. of Samples MSE R2 
Training 12206 1.90927e-1 0.999894 
Validation 2615 2.35444e-1 0.999874 
Testing 2615 2.01139e-1 0.999880 

Figure 8 depicts the histogram plots used to predict the accuracy of the two presented models. From Figure8-a, it can be 
observed that the errors of the VSC developed models' output are mostly equal to zero or close to zero in the range of -1.861 to 
2.272, where most of the output errors are equal to 0.4331, which is an indication of very good prediction performance from 
the developed model. From Figure8-b, it may also be observed that the error of the WSC developed models' output is mostly 
equal to zero or close to zero in the range of -1.334 to 0.7273. In addition, most of the output errors are equal to 0.04008, 
indicating very good prediction performance from the developed model. 

Figure 9 illustrates, for the developed models, the variation of MSE for data of validation, testing, and training against the 
number of iterations. At the start of the iteration, both biases and weights continue to adjust, and the validation improves, 
reaching an optimal convergence limit. 
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(a) 

 
(b) 

Figure 8: Error Histogram for both developed models: (a) VSC model (b) WSC model 

 

 
(a) 

 
(b) 

Figure 9: MSE variation with iteration for both developed models: (a): VSC model, (b) WSC model 
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 (a) 

 
(b) 

Figure 10: MSE variation with iteration for both developed models: (a): VSC model, (b) WSC model 

5. Data Construction Models Online Testing Results 
After training is completed, the data construction unit is built and connected to the ABS model for an online test. As 

illustrated in Figure (11-a), the data construction unit contains the two trained models, the WSC and VSC models. The WSC 
receives the vehicle speed sensor signal as an input and utilizes it to construct an estimated signal equivalent to the wheel speed 
sensor signal. On the other hand, the VSC receives the wheel speed sensor signal as an input and utilizes it to construct an 
estimated signal equivalent to the vehicle speed sensor signal. Figure (11-b) shows the connection of the data construction unit 
to the ABS model. 

 
(a) 

 
(b) 

Figure 11: Implemented System for Online Testing. (a): Data Construction Unit (b): ABS model with Data ConstructionUnit 

5.1 System Test With Faultless Sensor Signal 
According to the training results in section 2.3, each of the implemented data construction models can construct an 

accurate speed signal by utilizing the signal from the second sensor. To confirm such an ability, an online fault-free test has 
been applied. The applied test includes three different selected speeds. These selected speeds are 60, 80, and 100 km/h. 

At each selected speed test, four signals are obtained: actual wheel speed sensor signal (Ws_actual), actual vehicle speed 
sensor signal (Vs_actual), constructed vehicle speed signal (Vs_Constructed), and constructed wheel speed signal 
(Ws_Constructed). Figures 12-a and 12-f illustrate the plot of these obtained signals at the three selected values: 60, 80, and 
100 km/h, respectively. Where the two constructed speed signals (Vs_Constructed) and (Ws_Constructed) are compared to the 
corresponding actual speed signals (Vs_actual) and (Ws_actual), respectively. It can be seen that, despite the decrease in actual 
speed due to the braking process, there is a perfect match between the constructed signals and the corresponding actual signals. 
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(a) 

 
(b) 

 
(c ) 

 
(d) 

 
(e) 

 
(f) 

Figure 12: Constructed data signals versus actual signals at three different speeds: (a) and (b) at 60 km/hr, (c) and (d) 
                     at 80 km/hr, and finally (e) and (f) at 100 km/hr 

5.2 System Test with Defective Sensor Signal 
A test has been applied under special operating conditions to express the proposed system's ability to detect and diagnose 

the sensor fault accurately. In these operating conditions, a fault signal F (t) is injected into one of the two sensors' signals. The 
Equation of the injected fault can be constructed as: 

 𝐹𝐹(𝑑𝑑) = �10𝑑𝑑 − 40 4 ≤ 𝑑𝑑 ≤ 5
60 − 10𝑑𝑑 5 ≤ 𝑑𝑑 ≤ 6  (6) 

 Figure (13) shows the injected fault signal 𝐹𝐹(𝑑𝑑). 
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Figure 13: The proposed injected fault signal 𝐹𝐹(𝑑𝑑) related to equation (5) 

The fault signal 𝑭𝑭(𝒅𝒅) is injected into one of the speed sensors’ signals. This injection operation is performed through a 
fault injection unit, as shown in Figure 14: 

 
Figure 14: ABS model with Data Construction Unit and Fault Injection Unit 

The fault injection unit works to add the proposed fault signal 𝐹𝐹(𝑑𝑑) to the actual healthy signal Vs or Ww and generate a 
corresponding faulty signal F_Vs or F_Ww, respectively. 

During the applied test, the initial velocity is set to 70 km/h, and a fault signal is injected into the vehicle speed sensor. The 
response of the proposed system is expressed as shown in Figure (15-a). The figure shows that the faulty actual signal, 
Vs_Actual_Fault, is represented by a red-dash line. This signal is evaluated in a healthy state at times before 4 s and, after that, 
a faulty state. As can be seen, the fault of the vehicle speed sensor starts at 4 s and ends at 6 s, then the vehicle sensor returns to 
nominal behavior. Meanwhile, the corresponding constructed signal, Vs_Constructed, represented by a blue dashed line, 
displays the speed value without any flaw. Especially in between the 4s and 6s. Moreover, a residual signal results when a 
subtraction operation is performed between these two signals. This residual signal is shown in Figure (15-b). 

 
(a) 

 
(b) 

Figure 15: Injected Fault Test Results: (a) Faulty vs. Constructed Signals and (b) Generated residual signal 
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The online testing results reflect the performance training results expressed in tables 4 and 5. The implemented proposed 
models fulfill their purpose where, under faulty free conditions, the constructed signals are accurate, and there is no phase shaft 
relative to the corresponding actual signals. This qualifies them as replacements for actual sensor signals whenever they cannot 
read them for any reason. 

The same behavior is reflected under a faulty condition state. The generated residual signal accurately describes the drift in 
the actual signal due to fault occurrences and matches the injected fault signal in Figure 15. This will provide a precise 
indication of the severity of the occurrence and allow for appropriate fault management to be implemented. 

Thus, the proposed system not only works to detect and diagnose the faulty signal that may occur in the ABS speed 
sensors. It also works to tolerate this fault by providing a healthy, constructed signal to substitute for that faulty signal. This 
will ensure safe vehicle braking under faulty conditions. 

6. Conclusion 
In this work, an FTC method was implemented for ABS speed sensors. First, data constructor models that utilize a NN 

based on MLP were implemented to achieve an accurate and fast response under a faulty state. These models work to provide 
an alternative, reliable signals for both ABS speed sensors. After preparing the datasets required for training each proposed 
model, a MATLAB (2020 version) environment is used for training and testing objectives. Then, performance evaluation for 
trained models under faulty and faulty-free states. Their responses were accurate, and the implemented method served its 
design purpose, especially under a faulty state.  

Although all the preview benefits, there is a specific condition that arises when a fault occurs, which is, when one of the 
sensors is faulty, according to the proposed method, it will be detected by the residual signal, and a fault occurrence will be 
declared. But, at the same time, this faulty signal is currently being used to construct a corresponding signal for the other 
sensor, which will clearly result in an inaccurate constructed signal, leading to a false fault occurrence. Therefore, to overcome 
such an issue, an additional method needs to be applied that works simultaneously to isolate the faulty signal from being used 
by its related data constructor to avoid a false fault detection alert. This problem needs to be solved.  
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