Document Type : Research Paper

Authors

1 Laser and Optoelectronics Engineering Department, University of Technology-Iraq, Baghdad, Iraq

2 Laser and Optoelectronics Engineering Department- University of Technology-Iraq-Baghdad

3 Laser and Optoelectronic engineering, University of technology-Iraq, Baghdad, Iraq.

4 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Malaysia

Abstract

The optical properties of a grown gallium nitride (GaN) thin film on a porous silicon (P-Si) substrate was investigated. A Photo-electrochemical etching method was used to synthesize the Psi substrate, and a physical deposition method (pulsed laser deposition) of 1064 nm Q-switch Nd: YAG laser with a vacuum of 10−2 mbar was used to grow a thin layer of GaN on a prepared P-Si substrate. X-Ray diffraction displayed that GaN film has a high crystalline nature at the (002) plane. The photoluminescence of GaN film exhibited ultraviolet PL with a peak wavelength of 374 nm corresponding to GaN material and red PL with a peak wavelength of 730 nm corresponding to Psi substrate. The absorption coefficient of the P-Si substrate and grown GaN thin film was obtained from the absorption calculation of UV-Vis diffused spectroscopy at ambient temperature in the 230–1100 nm wavelength range. Extinction coefficients, optical energy gap, and refractive index of both the P-Si substrate and the grown GaN thin film have been determined, respectively. The direct optical energy gaps of both the P-Si substrate and grown GaN have also been determined using three methods: Plank’s relation with photoluminescence (PL) spectroscopy, Tauc'relation, and Kubulka-Munk argument with Uv-Vis diffused spectroscopy. It was observed that the optical energy gap of the P-Si substrate was 2.1 eV, while the grown GaN thin film had a multi-optical energy gap of 3.3 eV and 1.6 eV. A good agreement has been obtained between these mentioned methods.

Graphical Abstract

Highlights

  • Grown GAN thin film had a hexagonal crystalline structure and high-intensity peak at the (002) plane.
  • The absorption spectrum of grown GaN film showed a high absorbance at a UV spectrum of 302.88, 435.26 nm.
  • Three methods relations were used to estimate the optical energy gap of prepared P-Si substrate and grown GaN film.
  • The optical energy gap of the P-Si substrate was 2.1 eV, while the grown GaN thin film had a multi-optical energy gap of 3.3 and 1.6 eV.

Keywords

Main Subjects

[1] F. Lu, H. Wang, M. Zeng, L. Fu, Infinite possibilities of ultrathin III-V semiconductors: Starting from synthesis. Iscience, (2022) 103835. doi: 0.1016/j.isci.2022.103835
[2] Y.Wu, X. Liu, A.Pandey, P. Zhou, W.J Dong, et.al. III-Nitride Nanostructures:Emerging Applications for Micro-LEDs, Ultraviolet Photonics, Quantum Optoelectronics, and Artificial Photosynthesis. Progress in Quantum Electronics,(2022 )100401. doi: 10.1016/j.pquantelec.2022.100401
[3] H.D. Jabbar, M.A. Fakhri, M.J. AbdulRazzaq, Gallium Nitride–Based Photodiode: A review. Material Today:. Proc., 42 (2021) 2829-2834.doi: 10.1016/j.matpr.2020.12.729
[4] Z.T. Li, H.W. Zhang, J.S Li., , K. Cao, Z. Chen, et.al . Perovskite‐Gallium Nitride Tandem Light‐Emitting Diodes with Improved Luminance and Color Tunability. Advanced Science.,(2022) 2201844.doi: 10.1002/advs.202201844
[5] H.A.A.A. Amir, M.A. Fakhri, A.A. Alwahib, E.T. Salim, F.H. Alsultany, et.al. Synthesis of gallium nitride nanostructure using pulsed laser ablation in liquid for photoelectric detector. Mater. Sci. Semicond. Process., 150 (2022)106911. doi: 10.1016/j.mssp.2022.106911
[6] B. Wang, S. Liang, J. Yu, F. Xu, D. Zhang, et.al. Cascade GaN-based micro-photodiodes for photonic integration. J. Phys. D: Appl. Phys., 55(2022) 404004. doi: 10.1088/1361-6463/ac818a
[7] F. Wang, L. Li, H. Tang, Y. Hu, Effects of thickness and orientation on electromechanical properties of gallium nitride nanofilm: A multiscale insight. Comput. Mater. Sci., 203 (2022) 111122. doi: 10.1016/j.commatsci.2021.111122
[8] D. Zhang, L. Gao, Y. Tian, S. Zhang, Y. Du, et.al. Structural Design and Physical Properties of Gallium Nitrides under High Pressures. The Journal of Physical Chemistry C., 126 (2022) 7773-7777. doi: 10.1021/acs.jpcc.2c01801
[9] B. Ul Haq, S. AlFaify, R. Ahmed, , F.K. Butt, K. Alam, et.al. Structural, electronic, and optical properties of the pressure‐driven novel polymorphs of gallium nitride: first‐principles investigations. Int. J. Energy Res., 46(2022) 2361-2372. doi: 10.1002/er.7313
[10] B.J. Galapon, A.J. Hanson, D.J. Perreault, Measuring dynamic on resistance in GaN transistors at MHz frequencies. In 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL) IEEE., 1-8 (2018).
[11] J. Gallagher, O. Aziz, M.High Frequency Inductors for GaN Applications: Construction Analysis and Efficiency Comparison. In PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management , VDE .,1-7, (2019).
[12] F. Bartoli, T. Aubert, M. Moutaouekkil, J. Streque, P. Pigeat, et.al. AlN/GaN/Sapphire heterostructure for high-temperature packageless acoustic wave devices. Sens. Actuators, A., 283 (2018) 9-16. doi: 10.1016/j.sna.2018.08.011
[13] K. Du, Z. Xiong, L. Ao, L. Chen, Tuning the electronic and optical properties of two-dimensional gallium nitride by chemical functionalization. Vacuum., 185 (2021)110008. doi: 10.1016/j.vacuum.2020.110008
[14] A.K. Viswanath, Optical Properties of Gallium Nitride Nanostructures. In Encyclopedia of Nanoscience and Nanotechnology, 8, 179-217,2004.
[15] X. Wang, A. Yoshikawa, Molecular beam epitaxy growth of GaN, AlN and InN. Prog. Cryst. Growth Charact. Mater., 48 (2004) 42-103. doi: 10.1016/j.pcrysgrow.2005.03.002
[16] Y. Zhang, Z. Chen, W. Li, A.R. Arehart, S.A. Ringel, et.al. Metalorganic Chemical Vapor Deposition Gallium Nitride with Fast Growth Rate for Vertical Power Device Applications. physica status solidi (a)., 218 (2021) 2000469. doi: 10.1002/pssr.202100202
[17] K.C. Shen, M.C. Jiang, H.R. Liu, H.H. Hsueh, Y.C. Kao, et.al. Pulsed laser deposition of hexagonal GaN-on-Si (100) template for MOCVD applications. Optics express., 21(2013) 26468-26474. doi: 10.1364/OE.21.026468
[18] P.A. Gabrys, S.E. Seo, M.X. Wang, E. Oh, R.J. Macfarlane, C.A Mirkin, Lattice mismatch in crystalline nanoparticle thin films. In Spherical Nucleic Acids , Jenny Stanford Publishing., (2020) 1177-1193.
[19] L. Canham,  Handbook of porous silicon , Springer International Publishing., (2014) 163-170. doi: 10.1007/978-3-319-71381-6
[20] S.A.M. Salih, Porous Silicon Refractive Index Measurements with the Assistance of Two types of Lasers. Al-Nahrain Journal for Engineering Sciences., 20 (2017) 1034-1039. doi: 0.1002/1521-396X
[21] X. Kang, L. Wu, J.  Xu, D. Liu,  Q. Song, et.al. Preparation and photo-electrochemical properties of porous silicon/carbon dots composites. In IOP Conference Series: Materials Science and Engineering ,IOP Publishing., 892 (2020( 012025. doi: 10.1088/1757-899X/892/1/012025
[22] H.D. Jabbar, M.A. Fakhri, M.J. AbdulRazzaq, Synthesis Gallium Nitride on Porous Silicon Nano-Structure for Optoelectronics Devices. Silicon., 1-17,2022. doi: 10.1007/s12633-022-01999-8
[23] F.T.L Muniz, M.R. Miranda, C. Morilla dos Santos, J.M. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallographica Section A: Foundations and Advances., 72 (2016) 385-390. doi: 10.1107/S205327331600365X
[24] V.R. Kocharyan, A.S. Gogolev, A.E. Movsisyan, A.H Beybutyan, S.G. Khlopuzyan, L.R Aloyan, X-ray diffraction method for determination of interplanar spacing and temperature distribution in crystals under an external temperature gradient. Journal of Applied Crystallography., 48 (2015) 853-856. doi: 10.1107/S1600576715006913
[25] T. Wang, X. LIa, W. Feng, W. LId, C. TAOd, J. WENa, Structure and photoluminescence properties of the quasi-regular arrangements of porous silicon. Optoelectronics and Advanced Materials-Rapid Communications., 5 (2011) 495-498
[26] T. Tieu, M. Alba, R. Elnathan, A. Rius, N. Voelcker, Advances in porous silicon–based nanomaterials for diagnostic and therapeutic applications. Adv Ther., 2 (2019) 1800095. doi: 10.1002/adtp.201800095
[27] K.H Li, C. Tsai, J. Sarathy, J.C. Campbell, Chemically induced shifts in the photoluminescence spectra of porous silicon. Applied physics letters., 62 (1993) 3192-3194. doi: 10.1063/1.109126
[28] A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices and Microstructures., 89 (2016) 153-169. doi: 10.1016/j.spmi.2015.10.044
[29] C. Malerba, F. Biccari, C.L.A. Ricardo, M. D’Incau, P. Scardi, et.al. Absorption coefficient of bulk and thin film Cu2O. Solar energy materials and solar cells., 95(2011) 2848-2854. doi: 10.1016/j.solmat.2011.05.047
[30] M.A. Fakhri, E.T. Salim, A.W Abdulwahhab, U. Hashim, et.al. Optical properties of micro and nano LiNbO3 thin film prepared by spin coating. Optics & Laser Technology., 103 (2018) 226-232. doi: 10.1016/j.optlastec.2018.01.040
[31] A.S. Hassanien, A.A Akl. Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Applied Physics A., 124 (2018) 1-16. doi: 10.1007/s00339-018-2180-6
[32] N.F. Mott, E.A Davis. Electronic processes in non-crystalline materials. Oxford university press,2012.
[33] V. Džimbeg-Malčić, Ž. Barbarić-Mikočević, K. Itrić. Kubelka-Munk theory in describing optical properties of paper (I). Tehnički vjesnik., 18 (2011) 117-124.