Document Type : Research Paper

Authors

Materials Engineering Dept., University of Technology-Iraq, Alsina’a street, 10066 Baghdad, Iraq.

Abstract

Bone plates are essential for bone fracture healing because they modify the biomechanical microenvironment at the fracture site to provide the necessary mechanical fixation for fracture fragments. This paper addresses the use of composite bone plates in healing long-bone fractures such as transverse fractures of the femur. However, stress shielding in the bone due to metal plates can be reduced by designing implants with Bio-composites that involve Ultra high molecular polyethylene reinforced (UHMWPE) with Nano hydroxyapatite (n-HA) and Nano titanium dioxide (n-TiO2) particles at different weight fraction (0,1.5,2.5,3.5and 4. 5%) and 5% of carbon and Kevlar fibers. FRIT spectrum was used to identify the incorporation between the matrix and Nano particles, and the shifting in main peaks confirmed the good cross-linking within the composite structure. The specimens thus prepared were subjected to a compression test, hardness test, and density. The results indicated that UHMWPE+4.5%n-HA+CF hybrid biocomposite has the highest compressive strength and hardness properties. In contrast, UHMWPE+4.5%TiO2+CF has the highest density, which increased with increasing percentages of weight fraction of Nano-particles, where the compression strength 53 MPa, hardness property ranges 65.6 shore D, and density 1.09 (g/cm3). According to the current study's findings, it is possible to create bio-composites as internal fixation device with improved performance by placing different fiber reinforcements.

Graphical Abstract

Highlights

  • Hybrid composite specimens of the fracture fixation device were made by the hot pressing technique.
  • The weight fraction of nanoparticles and Types are most significant on the properties.
  • The compression strength, hardness, and density increased with increasing nanoparticle weight fraction.

Keywords

Main Subjects

[1] S. H. Kim, S. H. Chang, and H. J. Jung, The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time-varying properties of curing tissues, Compos. Struct., 92 (2010) 2109–2118. doi: 10.1016/j.compstruct.2009.09.051
[2] B. Qiao et al., Bone Plate Composed of a Ternary Nanohydroxyapatite/Polyamide 66/Glass Fiber Composite: Biocompatibility In Vivo and Internal Fixation for Canine Femur Fractures, Adv. Funct. Mater., 29 (2019).doi: 10.1002/adfm.201808738
[3] A. M. Hashim, E. K. Tanner, and J. K. Oleiwi, Biomechanics of Natural Fiber Green Composites as Internal Bone Plate rafted, MATEC Web Conf., 83, 2016. doi: 10.1051/matecconf/20168309002
[4] M. S. Ali et al., Carbon fibre composite bone plates. Development, evaluation and early clinical experience, J. Bone Joint Surg. Br., 72 (1990) 586–591.
[5] N. Gillett, S. A. Brown, J. H. Dumbleton, and R. P. Pool, The use of short carbon fibre reinforced thermoplastic plates for fracture fixation, Biomaterials, 6 (1985) 113–121.
[6] K. Fujihara, Z.-M. Huang, S. Ramakrishna, K. Satknanantham, and H. Hamada, Performance study of braided carbon/PEEK composite compression bone plates, Biomaterials, 24 (2003) 2661–2667.
[7] H. Balakrishnan, M. R. Husin, M. U. Wahit, and M. R. Abdul Kadir, Maleated High Density Polyethylene Compatibilized High Density Polyethylene/Hydroxyapatite Composites for Biomedical Applications: Properties and Characterization,” Polym. - Plast. Technol. Eng., 52 (2013) 774–782.doi: 10.1080/03602559.2013.763364
[8] M. Yunus and M. S. Alsoufi, Experimental Investigations into the Mechanical, Tribological, and Corrosion Properties of Hybrid Polymer Matrix Composites Comprising Ceramic Reinforcement for Biomedical Applications, Int. J. Biomater., 2018 (2018).doi: 10.1155/2018/9283291.
[9] J. K. Oleiwi, R. A. Anaee, and S. H. Radhi, Roughness, wear and thermal analysis of uhmwpe nanocomposites asacetabular cup in HIP joint replacement, Int. J. Mech. Prod. Eng. Res. Dev., 8 (2018) 855–864.doi: 10.24247/ijmperddec201887
[10] R. Anaee and S. Radhi, Compression and Hardness With Ftir Characterization, 8 (2019) 1–10.
[11] A. D. Thamir, J. S. Kashan, and J. T. Alhaidary, Effect of particle size on the physical and mechanical properties of nano HA/HDPE bio-composite for synthetic bone substitute, Eng. Tech. J., 32 (2014) 286-297.
[12] N. H. Rija, Modified polymer matrix nano biocomposite for bone repair and replacement-radiological study, Eng. Technol. J., 35 (2017) 365-371.doi: 10.30684/etj.35.4A.8
[13] J. K. Soundhar.A1, Investigations on mechanical and morphological characterization of chitosan reinforced polymer nanocomposites, Mater. Res. Express, 6 (2019).doi:10.1088/2053-1591/ab1288
[14] U. Kureemun, M. Ravandi, L. Q. N. Tran, W. S. Teo, T. E. Tay, and H. P. Lee, Effects of hybridization and hybrid fibre dispersion on the mechanical properties of woven flax-carbon epoxy at low carbon fibre volume fractions, Compos. Part B Eng., 134 (2018) 28–38.
[15] I. ASTM, Standard Test Method for Compressive Properties of Rigid Plastics, D 695-02a. 2002.
[16] H. A. Sharhan, Z. N. Rasheed, and J. K. Oleiwi, Effect of Polypropylene (PP) and Polyacrylonitrile (PAN) Fibers Reinforced Acrylic Resin on Compression, Hardness and Surface-Roughness for Denture Applications, in Key Engineering Materials, 911 (2022) 9–16.
[17] I. ASTM, Annual Book of ASTM Standard, ‘Standard test method for plastics properties-durometer hardness, D 2240-03, PP. 1-12, 2003.”
[18] M. T. Fahey, Nonlinear and Anisotropic Behavior of High Performance Fibers, p. 232, 1993.
[19] N. K. Faheed, J. K. Oleiwi, and Q. A. Hamad, Effect of Different Fiber Reinforcements on Som0e Properties of Prosthetic Socket, Eng. Technol. J., 39 (2021) 1715–1726.doi: 10.30684/etj.v39i11.2267
[20] A. E1252-98, Standard practice for general techniques for obtaining infrared spectra for qualitative analysis, Annu. B. Stand., 2013.
[21] X. Kang, W. Zhang, and C. Yang, Mechanical properties study of micro- and nano-hydroxyapatite reinforced ultrahigh molecular weight polyethylene composites, J. Appl. Polym. Sci., 133 (2016) 1–9. doi: 10.1002/app.42869
[22] B. B. Mandal, A. Grinberg, E. S. Gil, B. Panilaitis, and D. L. Kaplan, “High-strength silk protein scaffolds for bone repair,” Proc. Natl. Acad. Sci. U. S. A., 109 (2012) 7699–7704. doi: 10.1073/pnas.1119474109
[23] T. K. Das, P. Ghosh, and N. C. Das, Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review, Adv. Compos. Hybrid Mater., 2 (2019) 214–233. doi: 10.1007/s42114-018-0072-z
[24] D. Singh, A. Kumar, V. Bhalla, and R. K. Thakur, Mechanical and thermophysical properties of actinide monocarbides, Mod. Phys. Lett. B, 32 (2018).doi: 10.1142/S0217984918502482.
[25] J. R. Jones and L. L. Hench, Regeneration of trabecular bone using porous ceramics, Curr. Opin. Solid State Mater. Sci., 7 (2003) 301–307.
[26] S. A. Mirsalehi, A. Khavandi, S. H. Mirdamadi, M. R. Naimi-Jamal, S. Roshanfar, and H. Fatehi-Peykani, Synthesis of nano-HA and the effects on the mechanical properties of HA/UHMWPE nanocomposites, Adv. Mater. Process. Technol., 2 (2016) 209–219. doi: 10.1080/2374068X.2015.1127544
[27] A. Visco, C. Scolaro, A. Quattrocchi, and R. Montanini, Mechanical characterization of nanocomposite joints based on biomedical grade polyethylene under cyclical loads, Polymers (Basel)., 12 (2020) 1–11. doi: 10.3390/polym12112681
[28] A. V. Ushakov, I. V. Karpov, L. Y. Fedorov, A. A. Lepeshev, A. A. Shaikhadinov, and V. G. Demin, Nanocomposite material based on ultra-high-molecular-weight polyethylene and titanium dioxide electroarc nanopowder, Theor. Found. Chem. Eng., 49 (2015) 743–745. doi: 10.1134/S0040579515050176
[29] K. R. Dinesh and G. Hatti*,Tribological and Mechanical Properties of UHMWPE Polymer Composite filled with TiO2 and Al2O3 Particles used as TKR Implant, Int. J. Innov. Technol. Explor. Eng., 9 (2020) 991–995.doi: 10.35940/ijitee.f4147.049620
[30] S. H. R. Al-huseiny, Charcterization of polymer nanocomposite (UHMWPE/CNT, nHA) intended for use in artificial hip joint. Ph. D thesis, Department of Materials Engineering, University of Technology , 2019.
[31] P. S, S. KM, N. K, and S. S, Fiber Reinforced Composites - A Review, J. Mater. Sci. Eng., 06 (2017).doi: 10.4172/2169-0022.1000341
[32] M. V. Branquinho et al., In vitro and in vivo characterization of PLLA-316L stainless steel electromechanical devices for bone tissue engineering—A preliminary study, Int. J. Mol. Sci., 22 (2021).doi: 10.3390/ijms22147655
[33] J. Cheng et al., Effective nondestructive evaluations on UHMWPE/Recycled-PA6 blends using FTIR imaging and dynamic mechanical analysis, Polym. Test., 59 (2017) 371–376.
[34] R. S. Al-Hamdan et al., Influence of hydroxyapatite nanospheres in dentin adhesive on the dentin bond integrity and degree of conversion: A scanning electron microscopy (SEM), raman, fourier transform-infrared (FTIR), and microtensile study, Polymers (Basel)., 12 (2020) 2948.
[35] To, Introduction to infrared and Raman spectroscopy. Elsevier, 2012.
[36] M. E. Darzi, S. I. Golestaneh, M. Kamali, and G. Karimi, Thermal and electrical performance analysis of co-electrospun-electrosprayed PCM nanofiber composites in the presence of graphene and carbon fiber powder, Renew. Energy, 135 (2019) 719–728.
[37] J. V Gulmine, P. R. Janissek, H. M. Heise, and L. Akcelrud, Polyethylene characterization by FTIR, Polym. Test., 21 (2002) 557–563.
[38] Y. C. Gou, L. Feng, and Y. Zhang, Effect of particle size on wettability measurement with Washburn equation, Res Explor Lab, 30 (2011) 17.
[39] A. M. Azam, A. Ali, H. Khan, T. Yasin, and M. S. Mehmood, Analysis of degradation in UHMWPE a comparative study among the various commercial and laboratory grades UHMWPE, IOP Conf. Ser. Mater. Sci. Eng., 146, 2016.doi: 10.1088/1757-899X/146/1/012025
[40] A. A. Edidin, C. W. Jewett, A. Kalinowski, K. Kwarteng, and S. M. Kurtz, Degradation of mechanical behavior in UHMWPE after natural and accelerated aging, Biomaterials, 21 (2000) 1451–1460.
[41] S. Krimm, C. Y. Liang, and G. B. B. M. Sutherland, Infrared spectra of high polymers. II. Polyethylene, J. Chem. Phys., 25 (1956) 549–562. doi: 10.1063/1.1742963
[42] L. Costa, M. P. Luda, L. Trossarelli, E. M. B. Del Prever, M. Crova, and P. Gallinaro, Oxidation in orthopaedic UHMWPE sterilized by gamma-radiation and ethylene oxide, Biomaterials, 19 (1998) 659–668.