Document Type : Research Paper

Authors

1 Chemical Engineering Department, University of Technology, Baghdad, Iraq.

2 Chemical Engineering Engineering Dept., University of Technology-Iraq, Alsina’a street,10066 Baghdad, Iraq.

Abstract

Recently, the applications of hydrate phenomena in industrial processes have been increasing. A clathrate or hydrate is a solid, ice-like compound that forms when water/guest is mixed under certain conditions. Hydrogen water molecules bond with the guest molecules to form a crystal lattice. Different guests can form the Clathrate (e.g., gases or liquids). Dilute Sulfuric acid is usually generated at different industrial plants, and these dilute acids are considered waste because they cannot be reused again. Many treatment processes handle this environmental problem, like electrochemistry, precipitation, adsorption, membrane filtration, and ion exchange. Although such processes have significant operational advantages, their disadvantage is that many of the high costs of the treatment process and the generated products of treatment are considered toxic pollutants. This work utilized clathrate phenomena experiments to re-concentrate dilute sulfuric acid. The selected clathrate guest was Cyclopentane. Each experiment s consists of a mixture of Cyclopentane and dilute sulfuric acids. The volume ratios of dilute sulfuric acid to Cyclopentane were (6:1, 4: 1, 3:1, and 2:1) with different initial concentrations (12.5%, 10%, 7.5%, 5%, 2.5%) of acid. It was found that the clathrate method was effective in re-concentrate dilute sulfuric acids with a maximum efficiency of 94% at the ratio of acid /cyclopentane (6:1) at 12.5% concentration. It can be concluded that the increase in dilute sulfuric acid /cyclopentane volume ratio leads increasing in removal efficiency while reducing the yield percentage and enriched Factor.

Graphical Abstract

Highlights

  • One method for recovering sulfuric acid (H2SO4) from spent acid is based on Clathrate.
  • Conducting hydrate formation experiments on a guest liquid to extract H2SO4.
  • Different volume ratios of Cyclopentane to spent acid at initial concentrations to produce H2SO4.
  • The hydrate method was effective in recovering H2SO4 from spent acids.
  • Hydrate formation is examined by increasing the time it takes to create hydrates. 

Keywords

Main Subjects

[1] A. A. Atamas, H. M. Cuppen, M. V. Koudriachova, & S. W. De Leeuw, Monte Carlo calculations of the free energy of binary sII hydrogen clathrate hydrates for identifying efficient promoter molecules. The J. of Ph. Chem. B,117  (2013) 1155-1165.  https://doi.org/10.1021/jp306585t 
[2] A. M. O. Mohamed, E. K. Paleologos, & F. Howari, Pollution Assessment for Sustainable Practices in App. Sci. and Eng. (2020).  https://doi.org/10.1016/B978-0-12-809582-9.00019-0 
[3] M. F. Kheshty, F. Varaminian, & N. Farhadian, Exploring the effect of important parameters on decomposition of gas hydrate structure I: A molecular dynamics simulation study, J. of Nat. Gas Sci. and Eng. 52 (2018) 1-12.  https://doi.org/10.1016/j.jngse.2018.01.025 
[4] I. B. A. Sfaxi, V. Belandria, A. H. Mohammadi, R. Lugo, & D. Richon, Phase equilibria of CO2+ N2 and CO2+ CH4 clathrate hydrates: Experimental measurements and thermodynamic modelling,Chem. eng. sci. 84 (2012) 602-611. https://doi.org/10.1016/j.ces.2012.08.041
[5] H. Najibi, K. Momeni, M. T. Sadeghi, & A. H. Mohammadi, Experimental measurement and thermodynamic modelling of phase equilibria of semi-clathrate hydrates of (CO2+ tetra-n-butyl-ammonium bromide) aqueous solution, The J. of Chem. Therm.  87 (2015) 122-128. https://doi.org/10.1016/j.jct.2015.03.024
[6] M. Seif, A. Kamran-Pirzaman, & A. H. Mohammadi, Phase equilibria of clathrate hydrates in CO2/CH4+(1-propanol/2-propanol)+ water systems: Experimental measurements and thermodynamic modeling, The J. of Chem. Therm. 118 (2018) 58-66. https://doi.org/10.1016/j.jct.2017.09.034
[7] K. Momeni, A. Jomekian, & B. Bazooyar, Semi-clathrate hydrate phase equilibria of carbon dioxide in presence of tetra-n-butyl-ammonium chloride (TBAC): Experimental measurements and thermodynamic modeling, Flu. Ph. Eq.  508 (2020) 112445. https://doi.org/10.1016/j.fluid.2019.112445
[8] H. Hassan, & H. Pahlavanzadeh, Thermodynamic modeling and experimental measurement of semi-clathrate hydrate phase equilibria for CH4 in the presence of cyclohexane (CH) and tetra-n-butyl ammonium bromide (TBAB) mixture, J. of Nat. Gas. Sci. and Eng.  75 (2020) 103128.  https://doi.org/10.1016/j.jngse.2019.103128  
[9] A. Sonune, & R. Ghate, Developments in wastewater treatment methods. Desalination,  167 (2004) 55-63. https://doi.org/10.1016/j.desal.2004.06.113
[10] S. T. AL-Hemeri, R. S. AL-Mukhtar, & M. N. Hussine, Removal of heavy metals from industrial wastewater by use of Cyclopentane-Clathrate Hydrate formation technology, In IOP Conference Series: Mater. Sci. and Eng.  737 (2020) 012178.  https://doi:10.1088/1757-899X/737/1/012178
[11] S. T. AL-Hemeri, R. S. AL-Mukhtar, & L. W. Mahmood, Thermodynamic and kinetic investigation of desalination by refrigerant clathrate hydrate formation. Eng. and Tech. J., 37 (2019) 29-44. https://doi.10.30684/etj.37.1C.6
[12] E. Romanovskaia, V. Romanovski, W. Kwapinski, & I.  Kurilo, Selective recovery of vanadium pentoxide from spent catalysts of sulfuric acid production: Sustainable approach,Hydr.  200 (2021) 105568. https://doi.org/10.1016/j.hydromet.2021.105568
[13] X. Chen, Y. Chen, T. Zhou, D. Liu, H. Hu, & S. Fan, Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Was. man.,  38 (2015)  349-356.  https://doi.org/10.1016/j.wasman.2014.12.023
[14] K. Várnai, L. Petri, & L. Nagy, Prospective Evaluation of Spent Sulfuric Acid Recovery by Process Simulation, Per. Poly. Che. Eng.,  65 (2021) 243-250. https://doi.org/10.3311/PPch.15679
[15] M. Asof, S. Arita, W. Andalia, & C. Rahmayati, C. Recovery of H2SO4 from spent acid waste using bentonite adsorbent, In MATEC Web of Conf., (2017)  02007 (2017). http://repository.unsri.ac.id/id/eprint/30589
[16] J. Castilla-Archilla, S. Papirio, & P. N. Lens, Two step process for volatile fatty acid production from brewery spent grain: hydrolysis and direct acidogenic fermentation using anaerobic granular sludge, Proc. Bio., 100 (2021) 272-283. https://doi.org/10.1016/j.procbio.2020.10.011
[17] L. Ulloa Guntiñas, M. Martínez Minchero, E. Bringas Elizalde, A. Cobo García, & M. F. San Román San Emeterio, Split regeneration of chelating resins for the selective recovery of nickel and copper,(2020).  https://doi.org/10.1016/j.seppur.2020.117516
[18] G. Chauhan, K. K. Pant, & K. D. Nigam, Metal recovery from hydroprocessing spent catalyst: a green chemical engineering approach. Indus. & Eng. Chem. Research, 52 (2013) 16724-16736.  https://doi.org/10.1021/ie4024484
[19] J. Charles, B. Sancey, N. Morin-Crini, P. M. Badot, F. Degiorgi, G. Trunfio, & G. Crini, Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator, Ecoto. and envir. safety, (2011) 74(7) 2057-2064. https://doi.org/10.1016/j.ecoenv.2011.07.025
[20] A. Da̧browski, Z. Hubicki, P. Podkościelny, & E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chem.,  56 (2004) 91-106. https://doi.org/10.1016/j.chemosphere.2004.03.006
[21] L. Marder, A. M.  Bernardes, & J. Z. Ferreira, Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system, Sepa. and Puri. Tech., 37 (2004) 247-255. https://doi.org/10.1016/j.seppur.2003.10.011
[22] N. Adhoum, L. Monser, N. Bellakhal, & J. E. Belgaied, Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr (VI) by electrocoagulation. J. of hazar.mater.  112 (2004) 207-213.  https://doi.org/10.1016/j.jhazmat.2004.04.018
[23] S. Ahmed, S. Chughtai, & M. A. Keane, The removal of cadmium and lead from aqueous solution by ion exchange with Na Y zeolite, Separa. and pur. tech.,  13 (1998) 57-64. https://doi.org/10.1016/S1383-5866(97)00063-4
[24] H. Alvares-Vazquez, B. Jefferson, & S. J. Judd, Membrane bioreactors vs. conventional biological, Chem. Tech., Bio., 79 (2004) 1043-1049.   https://doi.org/10.1002/jctb.1072
[25] R. S. Juang, H. C. Kao, & F. Y. Liu, Ion exchange recovery of Ni (II) from simulated electroplating waste solutions containing anionic ligands. J. of hazar.mater128 (2006) 53-59. https://doi.org/10.1016/j.jhazmat.2005.07.027
[26] M. Sugaya, & Y. H. Mori, Behavior of clathrate hydrate formation at the boundary of liquid water and a fluorocarbon in liquid or vapor state, Chem. Eng. Sci.,  51 (1996) 3505-3517. https://doi.org/10.1016/0009-2509(95)00404-1
[27] Y. Song, H. Dong, L. Yang, M. Yang, Y. Li, Z. Ling, & J. Zhao, Hydrate-based heavy metal separation from aqueous solution, Sci. rep. 6 (2016) 1-8.  https://doi.org/10.1038/srep21389
[28] N. Gaikwad, R. Nakka, V. Khavala, A. Bhadani, H. Mamane, & R. Kumar, Gas hydrate-based process for desalination of heavy metal ions from an aqueous solution: Kinetics and rate of recovery. ACS ES&T Water, 1 (2020) 134-144.  https://doi.org/10.1021/acsestwater.0c00025 
[29] E. Atangana, Production, disposal, and efficient technique used in the separation of heavy metals from red meat abattoir wastewater,Env. Sci.and Poll. Res., 27 (2020) 9424-9434. https://doi.org/10.1007/s11356-019-06850-z
[30] D. Corak, T. Barth, S. Høiland, T. Skodvin, R. Larsen, & T. Skjetne, Effect of subcooling and amount of hydrate former on formation of cyclopentane hydrates in brine, Desa. 278 (2011) 268-274. https://doi.org/10.1016/j.desal.2011.05.035